Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Conceptual internal design and computational fluid dynamics analysis of a supersonic inlet
Download
index.pdf
Date
2005
Author
Alemdaroğlu, Mine
Metadata
Show full item record
Item Usage Stats
375
views
975
downloads
Cite This
In this thesis, the conceptual internal design of the air inlet of a supersonic, high altitude, solid propellant ramjet cruise missile is performed. Inviscid, compressible CFD analysis of the designed inlet is made in order to obtain qualitative and quantitative performance characteristics of the inlet at different operating conditions. The conceptual design of the inlet is realized by using analytical relations and equations, correlations derived from numerous available past experimental data and state-of-the-art design examples. The performance estimation of the designed inlet at different operating conditions is done by using one and two dimensional gas dynamics equations. The results of the performance estimation study are compared with the results of the CFD analysis and these results are discussed in detail. A commercial tool, CFD-FASTRANÒ, is used for the CFD analysis. Inlet flow phenomena such as, different shock patterns and shock positions, performance degradation at off-design operating conditions and inlet unstart are observed. Keywords: Supersonic Inlet, Ramjet, CFD, Inlet Performance Characteristics, Operating Conditions, Unstart
Subject Keywords
Aeronautics.
URI
http://etd.lib.metu.edu.tr/upload/2/12606026/index.pdf
https://hdl.handle.net/11511/15078
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Numerical and experimantal analysis of flapping motion in hover, application to micro air vehicles
Kurtuluş, Dilek Funda; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2005)
The aerodynamics phenomena of flapping motion in hover are considered in view of the future Micro Air Vehicle applications. The aim of this work is to characterize the vortex dynamics generated by the wing in motion using direct numerical simulation and experimental analysis then to propose a simplified analytical model for prediction of the forces in order to optimize the parameters of the motion leading to maximum force. A great number of cases are investigated corresponding to different angles of attack,...
A tool for designing robust autopilots for ramjet missiles
Kahvecioğlu, Alper; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2006)
The study presented in this thesis comprises the development of the longitudinal autopilot algorithm for a ramjet powered air-to-surface missile. Ramjet Missiles have short time-of-flight, however they suffer from limited angle of attack margins due to poor operational-region characteristics of the ramjet engine. Because of such limitations and presence of uncertainties involved, Robust Control Techniques are used for the controller design. Robust Control Techniques not only provide an easy limitation/uncer...
Evaluation of a new turbulence model for boundary layer flows with pressure gradient
Marangoz, Alp; Çıray, Cahit; Department of Aerospace Engineering (2005)
In this thesis, a new turbulence model developed previously for channel and flat plate flows is evaluated for flat plate flows with pressure gradient. For this purpose a flow solver, which uses boundary layer equations as the governing equations and Von Karman momentum integral equation for the calculation of skin friction, is developed. It is shown that the error of the new turbulence model, in predicting the velocity profile, is less than 5 % for the flat plate flows without pressure gradient and less tha...
Three-dimensional design and analysis of a compressor rotor blade
Özgür, Cumhur; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2005)
Three-dimensional design and three-dimensional CFD analysis of a compressor rotor stage are performed. The design methodology followed is based on a mean line analysis and a radial equilibrium phase. The radial equilibrium is established at a selected number of radii. NACA 65 series airfoils are selected and stacked according to the experimental data available. The CFD methodology applied is based on a three-dimensional, finite difference, compressible flow Euler solver that includes the source terms belong...
Low reynolds number aerodynamics of flapping airfoils in hover and forward flight
Günaydınoğlu, Erkan; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2010)
The scope of the thesis is to numerically investigate the aerodynamics of flapping airfoils in hover and forward flight. The flowfields around flapping airfoils are computed by solving the governing equations on moving and/or deforming grids. The effects of Reynolds number, reduced frequency and airfoil geometry on unsteady aerodynamics of flapping airfoils undergoing pure plunge and combined pitch-plunge motions in forward flight are investigated. It is observed that dynamic stall of the airfoil is the mai...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Alemdaroğlu, “Conceptual internal design and computational fluid dynamics analysis of a supersonic inlet,” M.S. - Master of Science, Middle East Technical University, 2005.