Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Determination of the change in building capacity during earthquakes
Download
index.pdf
Date
2006
Author
Çevik, Deniz
Metadata
Show full item record
Item Usage Stats
316
views
91
downloads
Cite This
There is a great amount of building stock built in earthquake regions where earthquakes frequently occur. It is very probable that such buildings experience earthquakes more than once throughout their economic life. The motivation of this thesis arose from the lack of procedures to determine the change in building capacity as a result of prior earthquake damage. This study focuses on establishing a method that can be employed to determine the loss in the building capacity after experiencing an earthquake. In order to achieve this goal a number of frames were analyzed under several randomly selected earthquakes. Nonlinear time-history analyses and nonlinear static analyses were conducted to assess the prior and subsequent capacities of the frames under consideration. The structural analysis programs DRAIN-2DX and SAP2000 were employed for this purpose. The capacity curves obtained by these methods were investigated to propose a procedure by which the capacity of previously damaged structures can be determined. For time-history analyses the prior earthquake damage can be taken into account by applying the ground motion histories successively to the structure under consideration. In the case of nonlinear static analyses this was achieved by modifying the elements of the damaged structure in relation to the plastic deformation they experience. Finally a simple approximate procedure was developed using the regression analysis of the results. This procedure relies on the modification of the structure stiffness in proportion to the ductility demand the former earthquake imposes. The proposed procedures were applied to an existing 3D building to validate their applicability.
Subject Keywords
Structural engineering.
URI
http://etd.lib.metu.edu.tr/upload/12607085/index.pdf
https://hdl.handle.net/11511/15727
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Developing an innovative architectural and structural solution for seismic strengthening of reinforced concrete residential buildings
Toker, Saadet; Ünay, Ali İhsan; Department of Architecture (2004)
The recent earthquakes in Turkey have shown the poor seismic performance of reinforced concrete. This led to widespread utilization of several strengthening methods, each of which is convenient in different aspects. However, what is required to apply any of these methods is to evacuate the building in question since the interruptions are mostly within the building and to the structural members. This study proposes a method for external strengthening of typical five storey reinforced concrete buildings that ...
Fragility based assessment of lowrise and midrise reinforced concrete frame buildings in turkey using Düzce damage database
Özün, Ahsen; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
In this study, the seismic fragility assessment of low-rise and mid-rise reinforced concrete frame buildings which constitute approximately 75 % of the total building stock in Turkey is investigated to quantify the earthquake risk. The inventory used in this study is selected from Düzce damage database which was compiled after the devastating 1999 earthquakes in the Marmara region. These buildings are not designed according to the current code regulations and the supervision in the construction phase is not...
Low cycle fatigue effects in the damage caused by the Marmara earthquake of August 17, 1999
Acar, Fikri; Gülkan, Polat; Department of Civil Engineering (2005)
This study mainly addresses the problem of estimating the prior earthquake damage on the response of reinforced concrete structures to future earthquakes. The motivation has arisen from the heavy damages or collapses that occurred in many reinforced concrete structures following two major earthquakes that recently occurred in the Marmara Region, Turkey. The analysis tool employed for this purpose is the package named IDARC2D. Deterioration parameters of IDARC's hysteretic model have been calibrated using a ...
Seismic retrofitting of reinforced concrete buildings using steel braces with shear link
Durucan, Cengizhan; Dicleli, Murat; Department of Engineering Sciences (2009)
The catastrophic damage to the infrastructure due to the most recent major earthquakes around the world demonstrated the seismic vulnerability of many existing reinforced concrete buildings. Accordingly, this thesis is focused on a proposed seismic retrofitting system (PSRS) configured to upgrade the performance of seismically vulnerable reinforced concrete buildings. The proposed system is composed of a rigid steel frame with chevron braces and a conventional energy dissipating shear link. The retrofitting...
Simple models for drift estimates in framed structures during near-field earthquakes
Erdoğan, Burcu; Gülkan, Polat; Department of Civil Engineering (2007)
Maximum interstory drift and the distribution of this drift along the height of the structure are the main causes of structural and nonstructural damage in frame type buildings subjected to earthquake ground motions. Estimation of maximum interstory drift ratio is a good measure of the local response of buildings. Recent earthquakes have revealed the susceptibility of the existing building stock to near-fault ground motions characterized by a large, long-duration velocity pulse. In order to find rational so...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Çevik, “Determination of the change in building capacity during earthquakes,” M.S. - Master of Science, Middle East Technical University, 2006.