Computer aided design and structural analysis of pressure vessels

Download
2006
Kandaz, Murat
This study is conducted for the design and analysis of pressure vessels and associated pressurized equipment using various codes and methods. A computer software is developed as the main outcome of this study, which provides a quick and comprehensive analysis by using various methods utilized in codes and standards together with theoretical and empirical methods which are widely accepted throughout the world. Pressure vessels are analyzed using ASME Boiler and Pressure Vessel Code, whereas auxiliary codes, especially ASCE and AISC codes are utilized for structural analyses of these equipment. Effect of wind, seismic, and other types of loadings are also taken into consideration in detail, with dynamic analyses. Support structures and their auxiliary components are also items of analysis. Apart from pressure vessels, many pressurized process equipments that are commonly used in the industy are also included in the scope of the study. They include safety valves which are an integral part of those kinds of pressurized or enclosed systems, two of the heat exchanger components with great importance -tubesheets and expansion joints-, and API 650 tanks for oil or water storage. The computer software called as VESSELAID is written in Microsoft Visual Basic 6.0 using SI units. Design and analysis methods of VESSELAID are based on various code rules, recommended design practices and alternative approaches.

Suggestions

Computer aided engineering of an unmanned underwater vehicle
Cevheri, Necmettin; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2009)
Hydrodynamic and thermal analyses performed during the conceptual design of an unmanned underwater vehicle are presented in this study. The hull shape is determined by considering alternative shapes and the dimensions are determined from the internal arrangement of components. Preliminary thermal analyses of the watertight section are performed with a commercial software called FLUENT to check the risk of over-heating due to the heat dissipation of devices. Performance of the proposed hull design is analyze...
Computation of drag force on single and close-following vehicles
Örselli, Erdem; Çetinkaya, Tahsin Ali; Department of Mechanical Engineering (2006)
In this study, application of computational fluid dynamics to ground vehicle aerodynamics was investigated. Two types of vehicle models namely, Ahmed Body and MIRA Notchback Body and their scaled models were used. A commercial software "Fluent" was used and the effects of implementing different turbulence models with wall functions were observed. As a result, an appropriate turbulence model was selected to use in the study. The drag forces, surface pressure distributions and wake formations were investigate...
Computer aided design of pressure vessels
Özgen, M.Kürşat; Bilir, Ömer G. (Elsevier BV, 1989-1)
A computer program is developed for the design of pressure vessels. The design rules of ASME Boiler and Pressure Vessel Code Section VIII Division 1 are applied. The program is written in a graphical utility version of GWBASIC, which has a wide variety of uses in IBM and/or IBM compatible PC user. The program has a wide range of choices for the selection of materials which have been specified by the Design Code.
Experimental study of solid propellant combustion instability
Çekiç, Ayça; Ulaş, Abdullah; Department of Mechanical Engineering (2005)
In this study, experimental investigation of solid propellant combustion instability using an end burning T-Burner setup is performed. For this purpose, a T-Burner setup is designed, analyzed, constructed and tested with all its sub components. T-Burner setup constructed is mainly composed of a base part, a control panel and the T-Burner itself. Combustion chamber, pressure stabilization mechanism, pressurization system, measurement instruments and data acquisition systems form the T-Burner. Pressure stabil...
Experimental investigation and modeling of dropwise condensation on a horizontal gold coated tube /
Serdar, Orhan; Yamalı, Cemil; Department of Mechanical Engineering (2004)
The phenomenon dropwise condensation on a horizontal gold coated tube is investigated by both analytical and experimental methods in this study. A computer program is prepared to calculate the dropwise condensation heat transfer rate on the horizontal gold coated tube. An experimental setup was also manufactured to measure the dropwise condensation heat transfer rate. The effects of flow rate, temperature of cooling water and also steam to wall temperature difference have been analytically investigated by u...
Citation Formats
M. Kandaz, “Computer aided design and structural analysis of pressure vessels,” M.S. - Master of Science, Middle East Technical University, 2006.