Estimation of the height of surface breaking cracks using ultrasonic timing methods

Öztürk, Emre
In this thesis, two ultrasonic timing methods are used in order to investigate the accuracy and reliability of measurements for surface breaking cracks having different orientations and heights. Also the best applicable measurement technique is searched by comparing the received test results. These methods are the Time of Flight Diffraction (TOFD) Method using diffraction of longitudinal waves and another method using the reflection of shear waves from the crack tips. In order to simulate and measure the height of surface breaking cracks three sets of test blocks from steel, and two sets of wedges from plexiglas material are manufactured. Also several probes having frequencies of 2Mhz, 4Mhz, 5Mhz and angles of 45o and 70o are used. Some test procedures are created to make realistic comparisons between the test results and the ones found by previous studies in literature. The results are compared according to the standard deviations of errors in crack height measurements and it is found that the depth, orientation of defects and the frequency of probes have considerable affect on the results. With wider probe angles and higher frequencies of probes to some extent the errors are observed to be running low and the height of cracks could be measured closer to the original size. The amount of the errors is increased in measurements with the increasing angle of cracks. The results of both methods are found to be very satisfactory. A range of ± 0.5 mm for means of error from the original vertical crack heights is determined. The results agree with the previous studies.


Lateral stiffness of steel plate shear wall systems
Topkaya, Cem (Elsevier BV, 2009-08-01)
The accuracy of the finite element method and strip method of analysis for calculating the lateral stiffness of steel plate shear wall (SPSW) systems is assessed by making comparisons with experimental findings. Comparisons revealed that while both methods provide acceptable accuracy, they also require the generation of sophisticated computer models. In this paper, two alternative methods are developed. The first one is an approximate hand method based on the deep beam theory. The classical deep beam theory...
Analytical prediction of thermal displacement capacity of integral bridges built on sand
Dicleli, Murat (SAGE Publications, 2005-02-01)
In this research, analytical equations are developed to calculate the lateral displacement capacity and maximum length limits of integral bridges built on sand based on the low-cycle fatigue performance of the piles under cyclic thermal variations and the ultimate strength of the abutment under positive thermal variations. To formulate the displacement capacity and maximum length limits of integral bridges based on the low cycle fatigue performance of steel H-piles under cyclic thermal variations, first, H-...
Analysis of the flexural strength of prestressed concrete flanged sections
Baran, Eray; French, Catherine (Precast/Prestressed Concrete Institute, 2005-01-01)
Inconsistencies in the sectional response of prestressed concrete flanged sections predicted by the AASHTO LRFD and AASHTO Standard Specifications, including the maximum reinforcement limits, may arise due to different interpretations of the equivalent rectangular compressive stress block idealization. Strain compatibility analyses with nonlinear material properties were performed for a variety of non-rectangular prestressed concrete sections to identify the inconsistencies between the two specifications. R...
Assessment of a frequency-domain linearised Euler solver for turbofan aft radiation predictions and comparison with measurements
Özyörük, Yusuf (2010-03-31)
This paper presents a frequency-domain computational aeroacoustics tool for predicting aft noise radiation through turbofan ducts and jets and its application to two realistic engine exhaust configurations which have been experimentally tested. The tool is based on the discretised axisymmetric form of the linearised Euler equations in conjunction with perfectly matched layer equations at the inlet and far-field boundaries using high-order finite differences. The resultant linear system of equations is inver...
ONDER, M; Kuzuoğlu, Mustafa (Institution of Engineering and Technology (IET), 1992-10-01)
An optimisation approach is presented for the problem of reconstructing the permittivity and conductivity profiles of a dielectric slab from the reflected and transmitted field data. The problem is treated as an optimal control problem where the norm of the difference of measured and calculated boundary data is minimised subject to the state equation governing the system. The original constrained optimisation problem is reduced to the evaluation of stationary points of an augmented functional which is obtai...
Citation Formats
E. Öztürk, “Estimation of the height of surface breaking cracks using ultrasonic timing methods,” M.S. - Master of Science, Middle East Technical University, 2006.