On optimal resource allocation in phased array radar systems

Ircı, Ayhan
In this thesis, the problem of optimal resource allocation in real-time systems is studied. A recently proposed resource allocation approach called Q-RAM (Quality of Service based Resource Allocation Model) is investigated in detail. The goal of the Q-RAM based approaches is to minimize the execution speed in real-time systems while meeting resource constraints and maximizing total utility. Phased array radar system is an example of a system in which multiple tasks contend for multiple resources in order to satisfy their requirements. In this system, multiple targets are tracked (each a separate task) by the radar system simultaneously requiring processor and energy resources of the radar system. Phased array radar system is considered as an illustrative application area in order to comparatively evaluate the resource allocation approaches. For the problem of optimal resource allocation with single resource type, the Q-RAM algorithm appears incompletely specified, namely it does not have a termination criteria set that can terminate the algorithm in all possible cases. In the present study, first, the Q-RAM solution approach to the radar resource allocation problem with single resource type is extended to give a global optimal solution in all possible termination cases. For the case of multiple resource types, the Q-RAM approach can only generate near-optimal results. In this thesis, for the formulated radar resource allocation problem with multiple resource types, the Methods of Feasible Directions are considered as an alternative solution approach. For the multiple resource type case, the performances of both the Q-RAM approach and the Methods of Feasible Directions are investigated in terms of optimality and convergence speed with the help of Monte-Carlo simulations. It is observed from the results of the simulation experiments that the Gradient Projection Method produce results outperforming the Q-RAM approach in closeness to optimality with comparable execution times.


The effect of design patterns on object-oriented metrics and software error-proneness
Aydınöz, Barış; Bilgen, Semih; Department of Electrical and Electronics Engineering (2006)
This thesis study investigates the connection between design patterns, OO metrics and software error-proneness. The literature on OO metrics, design patterns and software error-proneness is reviewed. Different software projects and synthetic source codes have been analyzed to verify this connection.
Implementation of a risc microcontroller using fpga
Gümüş, Raşit; Güran, Hasan; Department of Electrical and Electronics Engineering (2005)
In this thesis a microcontroller core is developed in an FPGA. Its instruction set is compatible with the microcontroller PIC16XX series by Microchip Technology. The microcontroller employs a RISC architecture with separate busses for instructions and data. Our goal in this research is to implement and evaluate the design in the FPGA. Increasing performance and gate capacity of recent FPGA devices permits complex logic systems to be implemented on a single programmable device. Such a growing complexity dema...
A Viterbi decoder using system C for area efficient VLSI imlementation
Sözen, Serkan; Aşkar, Murat; Department of Electrical and Electronics Engineering (2006)
In this thesis, the VLSI implementation of Viterbi decoder using a design and simulation platform called SystemC is studied. For this purpose, the architecture of Viterbi decoder is tried to be optimized for VLSI implementations. Consequently, two novel area efficient structures for reconfigurable Viterbi decoders have been suggested. The traditional and SystemC design cycles are compared to show the advantages of SystemC, and the C++ platforms supporting SystemC are listed, installation issues and examples...
Ray based finite difference method for time domain electromagnetics
Çiydem, Mehmet; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2005)
In this study, novel Ray Based finite difference method for Time Domain electromagnetics(RBTD) has been developed. Instead of solving Maxwell̕s hyperbolic partial differential equations directly, Geometrical Optics tools (wavefronts, rays) and Taylor series have been utilized. Discontinuities of electromagnetic fields lie on wavefronts and propagate along rays. They are transported in the computational domain by transport equations which are ordinary differential equations. Then time dependent field solutio...
Development of a tool for web based control engineering education
Ciğeroğlu, Hüseyin; Yüksel, Önder; Department of Electrical and Electronics Engineering (2004)
It is obvious that learning is more productive with visual mediums and simulations. Especially in technical subjects, this approach is more important. Visual modification of parameters in a control system provides many benefits both in analyzing the system and in learning process. Additionally if this material is published on the internet, students can reach anywhere anytime to this material. This thesis describes a Web-based system developed for control engineering education for both the instructor and the...
Citation Formats
A. Ircı, “On optimal resource allocation in phased array radar systems,” M.S. - Master of Science, Middle East Technical University, 2006.