Implementation of a risc microcontroller using fpga

Gümüş, Raşit
In this thesis a microcontroller core is developed in an FPGA. Its instruction set is compatible with the microcontroller PIC16XX series by Microchip Technology. The microcontroller employs a RISC architecture with separate busses for instructions and data. Our goal in this research is to implement and evaluate the design in the FPGA. Increasing performance and gate capacity of recent FPGA devices permits complex logic systems to be implemented on a single programmable device. Such a growing complexity demands design approaches, which can lead to designs containing millions of logic gates, memories, high-speed interfaces, and other high-performance components. In recent years, the continuous development in the area of highly integrated circuits has lead to a change in the design methods used, making it possible to economically utilize FPGAs in many designs. A test demo board from the Digilent Inc is used to fit our testing requirements of the RISC microcontroller. The test demo board also had the capability of communicating with a personal computer (PC) so that we can load the program from PC. Based on the modern design methods the microcontroller core is developed using the Verilog hardware description language. Xilinx ISE Foundation 6.3i software is used for its synthesis and implementation. An embedded test program code using MPLAB is also developed, and then loaded into the designed microcontroller residing in the FPGA. In order to perform a functional test of the microcontroller core a special test program downloader application is designed by using Borland C++ Builder. First, the specification from the PIC16XX datasheet is transferred into an abstract behavioral description. Based on that, the next step is to develop a description of the microcontroller core with some minor modifications which can be synthesizable into a FPGA. Finally, the resulting gate level


Design and FPGA implementation of hash processor
Şiltu, Çelebi Tuğba; Aşkar, Murat; Department of Electrical and Electronics Engineering (2007)
In this thesis, an FPGA based hash processor is designed and implemented using a hardware description language; VHDL. Hash functions are among the most important cryptographic primitives and used in the several fields of communication integrity and signature authentication. These functions are used to obtain a fixed-size fingerprint or hash value of an arbitrary long message. The hash functions SHA-1 and SHA2-256 are examined in order to find the common instructions to implement them using same hardware blo...
Reliability improvement of RF MEMS devices based on lifetime measurements
Gürbüz, Ozan Doğan; Demir, Şimşek; Akın, Tayfun; Department of Electrical and Electronics Engineering (2010)
This thesis presents fabrication of shunt, capacitive contact type RF MEMS switches which are designed according to given mm-wave performance specifications. The designed switches are modified for investigation in terms of reliability and lifetime. To observe the real-time performance of switches a time domain measurement setup is established and a CV (capacitance vs. voltage) curve measurement system is also included to measure CV curves, pull-in and hold-down voltages and the shifts of these due to actuat...
The implementation of a direct digital synthesis based function generator using SystemC and VHDL
Kazancıoğlu, Uğur; Aşkar, Murat; Department of Electrical and Electronics Engineering (2007)
In this thesis, a direct digital synthesis (DDS) based function generator design module is presented, defined and implemented using two digital hardware modeling/design languages namely SystemC and VHDL. The simulation, synthesis and applicability performances of these two design languages are compared by following all digital hardware design stages. The advantages and open issues of SystemC based hardware design flow are emphasized in order to be a reference for future studies. SystemC initially appeared a...
Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
High performance CMOS capacitive interface circuits for MEMS gyroscopes
Silay, Kanber Mithat; Akar, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis reports the development and analysis of high performance CMOS readout electronics for increasing the performance of MEMS gyroscopes developed at Middle East Technical University (METU). These readout electronics are based on unity gain buffers implemented with source followers. High impedance node biasing problem present in capacitive interfaces is solved with the implementation of a transistor operating in the subthreshold region. A generalized fully differential gyroscope model with force feed...
Citation Formats
R. Gümüş, “Implementation of a risc microcontroller using fpga,” M.S. - Master of Science, Middle East Technical University, 2005.