Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A novel modeling methodology and performance improvement technique for DMTL phase shifters
Download
index.pdf
Date
2006
Author
İstanbulluoğlu, İpek
Metadata
Show full item record
Item Usage Stats
264
views
220
downloads
Cite This
This thesis presents distributed MEMS transmission line (DMTL) phase shifters, emphasizing the circuit modeling and design as well as the performance improvement. A novel modeling methodology is introduced for DMTL unit sections, with bridge widths larger than 50 μm. The introduced model is compared with EM simulation results and the CLR modeling results. For structures with bridge widths larger than 50 μm, the introduced model fits the simulation results much better than the CLR model. The simulated structures are fabricated in METU micro-electronics facilities on glass substrates using gold structural layers. 1-20 GHz S-parameter measurement results of various DMTL structures are compared with the introduced model. It is observed that the S-parameters match except for a scaling need in the insertion loss. The measurement results give 2 dB insertion and 15 dB isolation at 20 GHz. The ABCD parameters of the introduced model are converted into S-parameters. Loss and the phase shift of the DMTL structures are expressed in terms of these S-parameters. These expressions are re-written as MATLAB code, from which the phase shift/loss (degree/dB) performance is evaluated. Therefore degree/dB plots with respect to bridge widths and center CPW conductor widths are obtained. From these plots the optimum DMTL phase shifters, which give maximum phase shift for minimum loss are determined for a pre-defined DMTL structure. To increase the degree/dB performance of a DMTL phase shifter, a change in the geometry of the DMTL phase shifters is proposed. The geometry change is based on inserting an open-ended stub through the signal line and connecting one side of the stub to the bridge. By this way, the stub capacitance is added to the shunt capacitance of the bridge satisfying a larger phase shift. The simulations point out a performance of 217 degree/dB at 20 GHz with a 15 % change in the 25 μm wide bridge height ratio.
Subject Keywords
Electronics.
URI
http://etd.lib.metu.edu.tr/upload/2/12607522/index.pdf
https://hdl.handle.net/11511/16296
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Design and implementation of microwave lumped components and system integration using MEMS technology
Temoçin, Engin Ufuk; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the design and fabrication of coplanar waveguide to microstrip transitions and planar spiral inductors, and the design of metal-insulator-metal capacitors, a planar band-pass, and a low-pass filter structures as an application for the inductors and capacitors using the RF MEMS technology. This thesis also includes a packaging method for RF MEMS devices with the use of “benzocyclobutene” as bonding material. The transition structures are formed by four different methods between coplanar ...
Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
High performance MEMS gyroscopes
Azgın, Kıvanç; Akın, Tayfun; Department of Electrical and Electronics Engineering (2007)
This thesis reports development of three different high performance, low g-sensitive micromachined gyroscopes having single, double, and quadruple masses. The single mass gyroscope (SMG) is developed for comparison of its performance with the double mass gyroscope (DMG) and quadruple mass gyroscope (QMG). DMG is a tuning fork gyroscope, diminishing the effects of unpredictable g-loadings during regular operation, while QMG is a twin tuning fork gyroscope, developed for a uniform and minimized g-sensitivity....
The implementation of a direct digital synthesis based function generator using SystemC and VHDL
Kazancıoğlu, Uğur; Aşkar, Murat; Department of Electrical and Electronics Engineering (2007)
In this thesis, a direct digital synthesis (DDS) based function generator design module is presented, defined and implemented using two digital hardware modeling/design languages namely SystemC and VHDL. The simulation, synthesis and applicability performances of these two design languages are compared by following all digital hardware design stages. The advantages and open issues of SystemC based hardware design flow are emphasized in order to be a reference for future studies. SystemC initially appeared a...
A monolithic phased array using rf mems technology
Topallı, Kağan; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2007)
This thesis presents a novel monolithic phased array implemented using the RF MEMS technology. The structure, which is designed at 15 GHz, consists of four linearly placed microstrip patch antennas, 3-bit distributed RF MEMS low-loss phase shifters, and a corporate feed network. The RF MEMS phase shifter employed in the system consists of three sections with a total of 28 unit cells, and it occupies an area of 22.4 mm 2.1 mm. The performance of the phase shifters is improved using high-Q metal-air-metal ca...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. İstanbulluoğlu, “A novel modeling methodology and performance improvement technique for DMTL phase shifters,” M.S. - Master of Science, Middle East Technical University, 2006.