Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Comparison of decoding algorithms for low-density parity-check codes
Download
index.pdf
Date
2006
Author
Kolaylı, Mert
Metadata
Show full item record
Item Usage Stats
247
views
71
downloads
Cite This
Low-density parity-check (LDPC) codes are a subclass of linear block codes. These codes have parity-check matrices in which the ratio of the non-zero elements to all elements is low. This property is exploited in defining low complexity decoding algorithms. Low-density parity-check codes have good distance properties and error correction capability near Shannon limits. In this thesis, the sum-product and the bit-flip decoding algorithms for low-density parity-check codes are implemented on Intel Pentium M 1,86 GHz processor using the software called MATLAB. Simulations for the two decoding algorithms are made over additive white gaussian noise (AWGN) channel changing the code parameters like the information rate, the blocklength of the code and the column weight of the parity-check matrix. Performance comparison of the two decoding algorithms are made according to these simulation results. As expected, the sum-product algorithm, which is based on soft-decision decoding, outperforms the bit-flip algorithm, which depends on hard-decision decoding. Our simulations show that the performance of LDPC codes improves with increasing blocklength and number of iterations for both decoding algorithms. Since the sum-product algorithm has lower error-floor characteristics, increasing the number of iterations is more effective for the sum-product decoder compared to the bit-flip decoder. By having better BER performance for lower information rates, the bit-flip algorithm performs according to the expectations; however, the performance of the sum-product decoder deteriorates for information rates below 0.5 instead of improving. By irregular construction of LDPC codes, a performance improvement is observed especially for low SNR values.
Subject Keywords
Telecommunication (including telegraphy, telephone, radio, radar, television)
URI
http://etd.lib.metu.edu.tr/upload/12607731/index.pdf
https://hdl.handle.net/11511/16348
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Performance comparison of message passing decoding algorithms for binary and non-binary low density parity check (LDPC) codes
Uzunoğlu, Cihan; Yücel, Melek D; Department of Electrical and Electronics Engineering (2007)
In this thesis, we investigate the basics of Low-Density Parity-Check (LDPC) codes over binary and non-binary alphabets. We especially focus on the message passing decoding algorithms, which have different message definitions such as a posteriori probabilities, log-likelihood ratios and Fourier transforms of probabilities. We present the simulation results that compare the performances of small block length binary and non-binary LDPC codes, which have regular and irregular structures over GF(2),GF(4) and GF...
Achievable coding rates for awgn and block fading channels in the finite blocklength regime
Vural, Mehmet; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2010)
In practice, a communication system works with finite blocklength codes because of the delay constraints and the information-theoretic bounds which are proposed for finite blocklength systems can be exploited to determine the performance of a designed system. In this thesis, achievable rates for given average error probabilities are considered for finite blocklength systems. Although classical bounds can be used to upper bound the error probability, these bounds require the optimization of auxiliary variabl...
Direction of arrival estimation by array interpolation in randomly distributed sensor arrays
Akyıldız, Işın; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2006)
In this thesis, DOA estimation using array interpolation in randomly distributed sensor arrays is considered. Array interpolation is a technique in which a virtual array is obtained from the real array and the outputs of the virtual array, computed from the real array using a linear transformation, is used for direction of arrival estimation. The idea of array interpolation techniques is to make simplified and computationally less demanding high resolution direction finding methods applicable to the general...
Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes
Lopez-Permouth, Sergio R.; Ozadam, Hakan; Özbudak, Ferruh; SZABO, Steve (2013-01-01)
Cyclic, negacyclic and constacyclic codes are part of a larger class of codes called polycyclic codes; namely, those codes which can be viewed as ideals of a factor ring of a polynomial ring. The structure of the ambient ring of polycyclic codes over GR(p(a), m) and generating sets for its ideals are considered. It is shown that these generating sets are strong Groebner bases. A method for finding such sets in the case that a = 2 is given. This explicitly gives the Hamming distance of all cyclic codes of le...
On Linear Complementary Pairs of Codes
CARLET, Claude; Guneri, Cem; Özbudak, Ferruh; Ozkaya, Buket; SOLE, Patrick (Institute of Electrical and Electronics Engineers (IEEE), 2018-10-01)
We study linear complementary pairs (LCP) of codes (C, D), where both codes belong to the same algebraic code family. We especially investigate constacyclic and quasicyclic LCP of codes. We obtain characterizations for LCP of constacyclic codes and LCP of quasi-cyclic codes. Our result for the constacyclic complementary pairs extends the characterization of linear complementary dual (LCD) cyclic codes given by Yang and Massey. We observe that when C and I) are complementary and constacyclic, the codes C and...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Kolaylı, “Comparison of decoding algorithms for low-density parity-check codes,” M.S. - Master of Science, Middle East Technical University, 2006.