Performance comparison of message passing decoding algorithms for binary and non-binary low density parity check (LDPC) codes

Download
2007
Uzunoğlu, Cihan
In this thesis, we investigate the basics of Low-Density Parity-Check (LDPC) codes over binary and non-binary alphabets. We especially focus on the message passing decoding algorithms, which have different message definitions such as a posteriori probabilities, log-likelihood ratios and Fourier transforms of probabilities. We present the simulation results that compare the performances of small block length binary and non-binary LDPC codes, which have regular and irregular structures over GF(2),GF(4) and GF(8) alphabets. We observe that choosing non-binary alphabets improve the performance with careful selection of mean column weight by comparing LDPC codes with variable node degrees of 3, 2.8 and 2.6, since it is effective in the order of GF(2), GF(4) and GF(8) performances.

Suggestions

Application of ODSA to population calculation
Ulukaya, Mustafa; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2006)
In this thesis, Optimum Decoding-based Smoothing Algorithm (ODSA) is applied to well-known Discrete Lotka-Volterra Model. The performance of the algorithm is investigated for various parameters by simulations. Moreover, ODSA is compared with the SIR Particle Filter Algorithm. The advantages and disadvantages of the both algorithms are presented.
Comparison of decoding algorithms for low-density parity-check codes
Kolaylı, Mert; Yücel, Melek D; Department of Electrical and Electronics Engineering (2006)
Low-density parity-check (LDPC) codes are a subclass of linear block codes. These codes have parity-check matrices in which the ratio of the non-zero elements to all elements is low. This property is exploited in defining low complexity decoding algorithms. Low-density parity-check codes have good distance properties and error correction capability near Shannon limits. In this thesis, the sum-product and the bit-flip decoding algorithms for low-density parity-check codes are implemented on Intel Pentium M 1...
Feature based modulation recognition for intrapulse modulations
Çevik, Gözde; Akar, Gözde; Department of Electrical and Electronics Engineering (2006)
In this thesis study, a new method for automatic recognition of intrapulse modulations has been proposed. This new method deals the problem of modulation recognition with a feature-based approach. The features used to recognize the modulation type are Instantaneous Frequency, Instantaneous Bandwidth, Amplitude Modulation Depth, Box Dimension and Information Dimension. Instantaneous Bandwidth and Instantaneous Frequency features are extracted via Autoregressive Spectrum Modeling. Amplitude Modulation Depth i...
Direction of arrival estimation by array interpolation in randomly distributed sensor arrays
Akyıldız, Işın; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2006)
In this thesis, DOA estimation using array interpolation in randomly distributed sensor arrays is considered. Array interpolation is a technique in which a virtual array is obtained from the real array and the outputs of the virtual array, computed from the real array using a linear transformation, is used for direction of arrival estimation. The idea of array interpolation techniques is to make simplified and computationally less demanding high resolution direction finding methods applicable to the general...
Design and performance of capacity approaching irregular low-density parity-check codes
Bardak, Erinç Deniz; Diker Yücel, Melek; Department of Electrical and Electronics Engineering (2009)
In this thesis, design details of binary irregular Low-Density Parity-Check (LDPC) codes are investigated. We especially focus on the trade-off between the average variable node degree, wa, and the number of length-6 cycles of an irregular code. We observe that the performance of the irregular code improves with increasing wa up to a critical value, but deteriorates for larger wa because of the exponential increase in the number of length-6 cycles. We have designed an irregular code of length 16,000 bits wi...
Citation Formats
C. Uzunoğlu, “Performance comparison of message passing decoding algorithms for binary and non-binary low density parity check (LDPC) codes,” M.S. - Master of Science, Middle East Technical University, 2007.