Investigation of model updating techniques and their applications to aircraft structures

Download
2006
Kozak, Mustafa Tuğrul
Mathematical models that are built in order to simulate the behavior of structures, most often, tend to respond differently than the actual structures in their initial state. In order to use the mathematical models and their computational outputs instead of testing the real structure under every possible case, it is mandatory to have a mathematical model that reflects the characteristics of the actual structure in the best possible way. In this thesis, the so called model updating techniques used for updating the mathematical models in order to make them respond in the way the actual structures do are investigated. Case studies using computationally generated test data are performed using the direct and indirect modal updating techniques with the software developed for each method investigated. After investigating the direct and indirect modal updating techniques, two of them, one using frequency response functions and the other using modal sensitivities, are determined to be the most suitable ones for aircraft structures. A generic software is developed for the technique using modal sensitivities. A modal test is carried out on a scaled aircraft model. The test data is used for updating of the finite element model of the scaled aircraft using the modal sensitivities and the usability of the method is thus evaluated. The finite element model of a real aircraft using the modal test data is also updated using the modal sensitivities. A new error localization technique and a model updating routine are also proposed in this thesis. This modal updating routine is used with several case studies using computationally generated test data and it is concluded that it is capable of updating the mathematical models even with incomplete measured data.

Suggestions

Application of the wave equation analysis to pile drawing
Oranç, Nazire Zeynep; İzmirli, Oktay; Department of Engineering Sciences (1990)
The methods of analysis used to determine ultimate bearing capacity of piles are applied to a field case in Turkey. During the pile driving works of the Atatürk Culture Center in Samsun, Delmag D22-13 and Delmag D-15 diesel pile driving hammers have been used. The ultimate bearing capacity and skin friction values calculated using static formulas have been given as input to the wave equation pile analysis program FADWAVE written by J.E.Bowles. The analytical method used in this program was based on the wave...
Inertial parameter design of spatial mechanisms
Can, Fatih Cemal; Soylu, Reşit; Department of Mechanical Engineering (2003)
In this thesis, the inertial parameters of a spatial mechanism are used in order to optimize various aspects of the dynamic behaviour of the mechanism (such as minimizing actuator torque/ force fluctuations, shaking force/moment balancing, etc.) while the effects of loads are considered as well. Here, inertial parameters refer to the mass, 6 elements of the inertia tensor and coordinates of the center of mass of the links. The concept of Force Fluctuation Number (FFN) is utilized to optimize the dynamic beh...
Non-linear mathematical modeling of gear rotor bearing systems including bearing clearance
Gürkan, Niyazi Ersan; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2005)
In this study, a non-linear mathematical model of gear-rotor systems which consists of elastic shafts on elastic bearings with clearance and coupled by a non-linear gear mesh interface is developed. The mathematical model and the software (NLGRD 2.0) developed in a previous study is extended to include the non-linear effects due to bearing clearances by using non-linear bearing models. The model developed combines the versatility of using finite element method and the rigorous treatment of non-linear effect...
Characterization of fracture processes by continuum and discrete modelling
KALISKE, M.; Dal, Hüsnü; FLEISCHHAUER, R.; JENKEL, C.; NETZKER, C. (Springer Science and Business Media LLC, 2012-09-01)
A large number of methods to describe fracture mechanical features of structures on basis of computational algorithms have been developed in the past due to the importance of the topic. In this paper, current and promising numerical approaches for the characterization of fracture processes are presented. A fracture phenomenon can either be depicted by a continuum formulation or a discrete notch. Thus, starting point of the description is a micromechanically motivated formulation for the development of a loc...
Comparison of ASCE/SEI Standard and modal pushover-based ground motion scaling procedures for pre-tensioned concrete bridges
Özgenoğlu, Müge; Arıcı, Yalın (2017-01-01)
Complex analysis methods such as non-linear time-history analyses (NTHA) are often required for the design of non-standard bridges. The selection of the ground motions for the NTHA is a crucial task as the results of the analyses show a wide variability according to the selected records. In order to predict the demand in accordance with the seismic hazard conditions of the site, the selected motions are usually modified by scaling procedures. Within this context, the performance of two scaling methods, name...
Citation Formats
M. T. Kozak, “Investigation of model updating techniques and their applications to aircraft structures,” M.S. - Master of Science, Middle East Technical University, 2006.