Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Comparison of ASCE/SEI Standard and modal pushover-based ground motion scaling procedures for pre-tensioned concrete bridges
Date
2017-01-01
Author
Özgenoğlu, Müge
Arıcı, Yalın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
Complex analysis methods such as non-linear time-history analyses (NTHA) are often required for the design of non-standard bridges. The selection of the ground motions for the NTHA is a crucial task as the results of the analyses show a wide variability according to the selected records. In order to predict the demand in accordance with the seismic hazard conditions of the site, the selected motions are usually modified by scaling procedures. Within this context, the performance of two scaling methods, namely the Modal Pushover Based Scaling (MPS) and ASCE/SEI procedures, are compared for the NTHA of a large bridge, the Demirtas Viaduct (longitude 29.10 degrees, latitude 40.28 degrees), in this study. The system comprised of 28 spans was idealised with two different analytical models in order to assess the effect of the modelling on the scaling procedures results. The effects of the hazard level on the scaling results were evaluated. The required number of motions for conducting effective analyses, i.e. the minimum number of motions for estimating the target goals, was investigated at different hazard levels. MPS reduced the dispersion considerably more than the ASCE scaling, indicating sets can be formed with fewer motions to predict the target levels.
Subject Keywords
Modal pushover scaling
,
SEI scaling
,
ASCE
,
Ground motion scaling
,
Non-linear time-history analysis
,
Seismic analysis of bridges
URI
https://hdl.handle.net/11511/38916
Journal
STRUCTURE AND INFRASTRUCTURE ENGINEERING
DOI
https://doi.org/10.1080/15732479.2017.1310258
Collections
Department of Civil Engineering, Article