Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of ionic strength on the performance of polymer enhanced ultrafiltration in heavy metal removal from aqueous solutions
Download
index.pdf
Date
2006
Author
İslamoğlu, Sezin
Metadata
Show full item record
Item Usage Stats
291
views
109
downloads
Cite This
Effect of ionic strength on the efficiency of heavy metal removal and recovery from aqueous solutions via continuous mode polymer enhanced ultrafiltration (PEUF) method was examined. Application of PEUF to divalent ions of cadmium, nickel and zinc after their prior linking with polyethylenimine (PEI) results in complete removal of metal ions from single component aqueous solutions at high pHs. Binding ability and hence the extent of metal retention in high ionic strength medium exhibits differences between solutions containing single and multicomponent metal mixtures. In single component metal solutions, extent of retention decreases but binding order of metals remains unaffected both in low and high ionic strength medium. But, in binary component metal mixtures, with increase in ionic strength the binding order of metals changes. Fractional separation of Cd, Ni and Zn ions from equimolar binary and ternary mixtures of these metals and effect of ionic strength on fractional separation efficiency were investigated. Depending on pH and salt concentration and metal pairs present in the solution fractional separation can be achieved.Dynamic and static light scattering experiments were performed in order to gain insight about the conformational changes in PEI structure due to the pH and ionic strength alternations in solution. It was found that, the increase in ionic strength reduces the size of the macromolecules. A chemical equilibrium model was developed in order to estimate the apparent binding constants of metal-PEI complexes. Based on the data obtained from continuous and batch mode PEUF experiments apparent binding constants were estimated and compared to reveal the performance differences between these operational modes.
Subject Keywords
Gases
,
Gas separation membranes.
,
Polymers.
URI
http://etd.lib.metu.edu.tr/upload/3/12607832/index.pdf
https://hdl.handle.net/11511/16519
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Effect of operating parameters on selective separation of heavy metals from binary mixtures via polymer enhanced ultrafiltration
Muslehiddinoglu, J; Uludağ, Yusuf; Ozbelge, HO; Yılmaz, Levent (Elsevier BV, 1998-03-18)
Performance of continuous polymer enhanced ultrafiltration (PEUF) method was investigated for removal of mercury and cadmium from binary mixtures. This method includes the addition of polyethyleneimine (PEI) as a water soluble polymer to bind the metals, which was followed by ultrafiltration operation performed on both laboratory and pilot scale systems. The influence of various operating parameters such as temperature, metal/polymer ratio, presence of calcium ions and pH on retention of metals and permeate...
Effect of preparation parameters on the performance of conductive composite gas separation membranes
Gulsen, D; Hacarloglu, P; Toppare, Levent Kamil; Yılmaz, Levent (2001-02-15)
Mixed matrix composite membranes of a conducting polymer, polypyrrole (PPy), and an insulating polymer, polybisphenol-A-carbonate (PC) were prepared by a combined in-situ polymerization and solvent evaporation. Mixed matrix composite membranes were synthesized to combine the good gas transport properties of conductive polymer, PPy, with good mechanical properties of PC.
Polymer blend based mixed matrix gas separation membranes
Karğılı, Melis; Yılmaz, Levent; Kalıpçılar, Halil; Department of Polymer Science and Technology (2015)
Polymer blending and mixed matrix membranes are two methods suggested to improve performance of gas separation membranes. Dense and asymmetric membranes of PES/PI blends with different compositions were prepared and the effect of blend composition on gas separation performances was investigated. In addition, PES/PI/ZIF-8 blend based mixed matrix membranes were prepared in order to investigate the effect of nano-porous filler addition to polymer blends. ZIF-8 particles with size of 83 nm were synthesized. Pa...
Effect of carboxylic acid crosslinking of cellulose membranes on nanofiltration performance in ethanol and dimethylsulfoxide
Konca, Kubra; Çulfaz Emecen, Pınar Zeynep (2019-10-01)
Cellulose membranes were fabricated via phase inversion using 1-ethyl-3-methylimidazolium acetate as solvent and acetone as volatile cosolvent. 1,2,3,4-butanetetracarboxylic acid was used to partially crosslink the hydroxyl groups of cellulose, thereby changing mechanical properties of the membranes and the interactions with solvents, ethanol and dimethyl sulfoxide, and solutes. Rejection of dyes of similar size, Bromothymol Blue, Rose Bengal and Crystal Violet were shown to correlate inversely with sorptio...
Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixed matrix membranes
Cakal, Ulgen; Yılmaz, Levent; Kalıpçılar, Halil (2012-11-01)
The performance of zeolite and low molecular weight additive incorporated polyethersulfone (PES) membranes on the separation of CO2/CH4 mixtures at 35 degrees C was investigated. Four types of membranes, pure PES, PES/ 2-hydroxy 5-methyl aniline (HMA), PES/SAPO-34 and PES/SAPO-34/HMA, were prepared by solvent evaporation method. The CO2 concentration in the feed was varied between 5 and 70% by volume. PES/SAPO-34 membranes had a total permeability coefficient of 3 Barrer for an equimolar mixture, which was ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. İslamoğlu, “Effect of ionic strength on the performance of polymer enhanced ultrafiltration in heavy metal removal from aqueous solutions,” Ph.D. - Doctoral Program, Middle East Technical University, 2006.