Hide/Show Apps

Determination of computational domain boundaries for viscous flow around two dimensional bodies

Download
2006
Basa, Mustafa Mazhar
Borders of flow field around immersed bodies can be extended to long distances since there are no physical boundaries. In computational practice however, the flow domain must be restricted to a reasonable size by imposing appropriate boundary conditions at the edges of the computational space. In this thesis work, streamlines obtained from potential flow solution in a relatively large spatial domain are utilized to specify the boundaries and boundary conditions for a more restricted computational domain to be used for detailed viscous flow computations. A grid generation code is adopted for generation of unstructured triangular grid systems for domains involving multiple immersed bodies of any shape at arbitrary orientations such as a group of tall buildings in horizontal plane. Finite volume method is used in the solution of Laplace equation for the stream function. A deformation modulus is introduced as a probe parameter to aid locating the viscous flow boundaries. The computer code acts as a preprocessor for viscous flow computations, specifying the computational boundaries, the boundary conditions and generating the computational grid.