Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Spectroscopic characterization of semiconductor nanocrystals
Download
index.pdf
Date
2007
Author
Yerci, Selçuk
Metadata
Show full item record
Item Usage Stats
159
views
82
downloads
Cite This
Semiconductor nanocrystals are expected to play an important role in the development of new generation of microelectronic and photonic devices such as light emitting diodes and memory elements. Optimization of these devices requires detailed investigations. Various spectroscopic techniques have been developed for material and devices characterization. This study covers the applications of the following techniques for the analysis of nanocrystalline materials: Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-Ray Diffraction (XRD) and X-Ray Photoelectron (XPS). Transmission Electron Microscopy (TEM) and Secondary Ion Mass Spectrometry (SIMS) are also used as complementary methods. Crystallinity ratio, size, physical and chemical environment of the nanostructures were probed with these methods. Si and Ge nanocrystals were formed into the oxides Al2O3 and SiO2 by ion implantation, magnetron sputtering and laser ablation methods. FTIR and XPS are two methods used to extract information on the surface of the nanocrystals. Raman and XRD are non destructive and easy-to-operate methods used widely to estimate the crystallinity to amorphous ratio and the sizes of the nanocrystals. In this study, the structural variations of SiO2 matrix during the formation of Si nanocrystals were characterized by FTIR. The shift in position and changes in intensity of the Si-O-Si asymmetric stretching band of SiOx was monitored. An indirect metrology method based on FTIR was developed to show the nanocrystal formation. Ge nanocrystals formed in SiO2 matrix were investigated using FTIR, Raman and XRD methods. FTIR spectroscopy showed that Ge atoms segregate completely from the matrix at relatively low temperatures 900 oC. The stress between the Ge nanocrystals and the matrix can vary in samples produced by magnetron sputtering if the production conditions are slightly different. Si and Ge nanocrystals were formed into Al2O3 matrix by ion implantation of Si and Ge ions into sapphire matrix. Raman, XRD, XPS and TEM methods were employed to characterize the formed nanocrystals. XRD is used to estimate the nanocrystal sizes which are in agreement with TEM observations. The stress on nanocrystals was observed by Raman and XRD methods, and a quantitative calculation was employed to the Si nanocrystals using the Raman results. XPS and SIMS depth profiles of the sample implanted with Si, and annealed at 1000 oC were measured. Precipitation of Si atoms with the heat treatment to form the nanocrystals was observed using XPS. The volume fraction of the SiOx shell to the Si core in Si nanocrystals was found to be 7.9 % at projection range of implantation.
Subject Keywords
Physics.
,
Nanocrystals.
URI
http://etd.lib.metu.edu.tr/upload/12608177/index.pdf
https://hdl.handle.net/11511/16706
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Silicon nanostructures for electro-optical and photovoltaic applications
Kulakcı, Mustafa; Turan, Raşit; Department of Physics (2012)
Recently extensive efforts have been spent in order to achieve all silicon based photonic devices exploiting the efficient light emission from nanostructured silicon systems. In this thesis, silicon based nanostructures have been investigated for electro-optical and photovoltaic applications. The thesis focused on three application areas of silicon nanostructures: Light emitting diode (LED), light modulation using quantum confined Stark effect (QCSE) and photovoltaic applications. In the context of LED appl...
Nonlinear optical properties of semiconductor heterostructures
Yıldırım, Hasan; Tomak, Mehmet; Department of Physics (2006)
The nonlinear optical properties of semiconductor heterostructures, such as GaAsAl/GaAs alloys, are studied with analytic and numerical methods on the basis of quantum mechanics. Particularly, second and third-order nonlinear optical properties of quantum wells described by the various types of confining potentials are considered within the density matrix formalism. We consider a Pöschl-Teller type potential which has been rarely considered in this area. It has a tunable asymmetry parameter, making it a goo...
Photoluminescence properties of Si nanocrystals embedded in SiO2 matrix
Seyhan, Ayşe; Turan, Raşit; Department of Physics (2010)
This thesis examines the luminescence properties of nanoscale silicon (Si) by using spectroscopic techniques. Since the development of new optical devices requires understanding light emission mechanism optical spectroscopy has become more important tool in the analysis of these structures. In this thesis, Si nanocrystals embedded in SiO2 matrix will be studied. Photoluminescence (PL) and Time-resolved photoluminescence spectroscopy (TRPL) have been used to detect the light emission in UV-Vis-NIR range. Exp...
Production of hydrogenated nanocrystalline silicon based thin film transistor
Aliyeva, Tamila; Atılgan, İsmail; Department of Physics (2010)
The instability under bias voltage stress and low mobility of hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT), produced by plasma enhanced chemical vapor deposition (PECVD) technique, are the main problems impeding the implementation of active matrix arrays for light emitting diode display panels and their peripheral circuitry. Replacing a-Si:H by hydrogenated nanocrystalline silicon film (nc-Si:H) seems a solution due to its higher mobility and better stability. Therefore nc-Si:H TFT was...
Synthesis and optoelectronic applications of benzotriazole and dibenzosilole based alternating copolymers
Erlik, Ozan; Çırpan, Ali; Department of Chemistry (2014)
Dibenzosilole synonym of silafluorene based polymers have been extensively used as the donor moiety in D-A approach for several years for optoelectronic applications like electrochromic (EC) devices, organic light emitting diodes (OLEDs), organic field effect transistors (OFETs) and most widely organic photovoltaics (OPVs). Moreover, chalcogenophenes such as thiophene and selenophene are used as an energy bridge between the donor and acceptor units to adjust the electronic and optical properties of the conj...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Yerci, “Spectroscopic characterization of semiconductor nanocrystals,” M.S. - Master of Science, Middle East Technical University, 2007.