Effect of different compositions rheological and mechanical properties of epdm rubber

Çavdar, Seda
In this work, EPDM rubber was compounded with increasing amount of filler (FEF N 550 type carbon black), process oil (saturated mineral oil), vulcanizing agent [di (t-butylperoxy) diisopropyl benzene, i.e., BBPIB] and diene [5-ethylidenebicyclo(2.2.1)-hept-2-ene, i.e., ENB] in order to investigate mechanical and rheological properties. Effect of Increasing amount of filler was investigated by using FEF N 550 type carbon black in 35, 70, 87.5, 105 phr. Decrease in scorch times of vulcanization reactions, ts2 (25, 21, 19, and 18 s, respectively) and slight increase in rate constants for vulcanization reactions (0.0270, 0.0274, 0.0301 and 0.0302 s-1, respectively) were explained in terms of nature of semi-active filler. Effect of increasing amount of process oil was investigated by using saturated mineral oil (TUDALEN 3909) in 15, 30, 45 phr. Scorch time for vulcanization reaction and rate constants were measured as 95, 103, 97 s and 0.0277, 0.0274, 0.0291 s-1, respectively. Effect of increasing amount of vulcanizing agent was investigated by using BBPIB (PERKADOX 14/40 MB-gr) in 2.5, 5, 7.5, 10 phr. The compound with 5 phr vulcanizing agent gave optimum rheometer data, crosslink density,, ultimate tensile strength, hardness, deflection and damping. Vulcanization reaction rate constant reached 0.0335 s-1 with 7.5 phr vulcanizing agent. Effect of increasing ENB ratio was investigated by using 4 different EPDM with ENB ratios 5.0, 5.6, 7.5, 8.9%. With two different cure systems, compounds with 5.6 and 7.5% ENB ratio gave optimum results. Vulcanization cure time, reaction rate constant and compression set properties changed in irregular manner.


Flame retardancy of polyamide compounds and micro/nano composites
Gündüz, Hüseyin Özgür; Kaynak, Cevdet; Department of Polymer Science and Technology (2009)
In the first part of this dissertation, glass fiber reinforced/unreinforced polyamide 6 (PA6) and polyamide 66 (PA66) were compounded with three different flame retardants, which were melamine cyanurate, red phosphorus and brominated epoxy with antimony trioxide, by using an industrial scale twin screw extruder. Then, to investigate flame retardancy of these specimens, UL-94, Limiting Oxygen Index (LOI) and Mass Loss Cone Calorimeter (MLC) tests were carried out. In addition to flammability tests, thermogra...
Preparation and characterization of thermally stable organoclays and their use in polymer based nanocomposites
Abdallah, Wissam; Yılmazer, Ülkü; Department of Chemical Engineering (2010)
The present study was aimed at exploring the purification and modification of montmorillonite rich Turkish bentonites by organic salts and their subsequent effects on the morphology (X-diffractometry, transmission electron microscopy, scanning electron microscopy), melt flow index, mechanical (Tensile, Impact) and especially thermal stability (thermal gravimetric analysis, differential scanning calorimetry) properties of polymer/organoclay nanocomposites with and without an elastomeric compatibilizer. The b...
Pyrolysis mass spectrometric analysis of copolymer of polyacrylonitrile and polythiophene
Oğuz, Gülcan; Hacaloğlu, Jale; Department of Polymer Science and Technology (2004)
In the first part of this work, the structural and thermal characteristics of polyacrylonitrile, polyacrylonitrile films treated under the electrolysis conditions in the absence of thiophene, polythiophene and the mechanical mixture and a conducting copolymer of polyacrylonitrile/polythiophene have been studied by pyrolysis mass spectrometry technique. The thermal degradation of polyacrylonitrile occurs in three steps; evolution of HCN, monomer, low molecular weight oligomers due to random chain cleavages a...
Effects of chain extension and branching on the properties of recycled poly(ethylene terephtkalate)-organoclay nanocomposites
Keyfoğlu, Ali Emrah; Yılmazer, Ülkü; Department of Chemical Engineering (2004)
In this study, the effects of chain extension and branching on the properties of nanocomposites produced from recycled poly(ethylene terephthalate) and organically modified clay were investigated. As the chain extension/branching agent, maleic anhydride (MA) and pyromellitic dianhydride (PMDA) were used. The nanocomposites were prepared by twin-screw extrusion, followed by injection molding. Recycled poly(ethylene terephthalate), was mixed with 2, 3 and 4 weight % of organically modified montmorillonite. Du...
Electrical and mechanical properties of carbon black reinforced high density polyethylene/low density polyethylene composites
Altıntaş, Bekir; Küçükyavuz, Zuhal; Department of Polymer Science and Technology (2004)
In this study, the High Density Polyethylene (HDPE) and Low Density Polyethylene (LDPE) blends prepared by Plasticorder Brabender were strengthened by adding Carbon Black (CB). Blends were prepared at 190 °C. Amounts of LDPE were changed to 30, 40, 50 and 60 percent by the volume and the percent amounts of CB were changed to 5, 10,15, 20 and 30 according to the total volume. Thermal and morphological properties were investigated by using Differential Scanning Calorimeter (DSC), Scanning Electron Microscope ...
Citation Formats
S. Çavdar, “Effect of different compositions rheological and mechanical properties of epdm rubber,” M.S. - Master of Science, Middle East Technical University, 2007.