Design of an autonomous landing control algorithm for a fixed wing UAV

Download
2007
Kargın, Volkan
This thesis concerns with the design and development of automatic flight controller strategies for the autonomous landing of fixed wing unmanned aircraft subject to severe environmental conditions. The Tactical Unmanned Aerial Vehicle (TUAV) designed at the Middle East Technical University (METU) is used as the subject platform. In the first part of this thesis, a dynamic model of the TUAV is developed in FORTRAN environment. The dynamic model is used to establish the stability characteristics of the TUAV. The simulation model also incorporates ground reaction and atmospheric models. Based on this model, the landing trajectory that provides shortest landing distance and smallest approach time is determined. Then, an automatic flight control system is designed for the autonomous landing of the TUAV. The controller uses a model inversion approach based on the dynamic model characteristics. Feed forward and mixing terms are added to increase performance of the autopilot. Landing strategies are developed under adverse atmospheric conditions and performance of three different classical controllers are compared. Finally, simulation results are presented to demonstrate the effectiveness of the design. Simulation cases include landing under crosswind, head wind, tail wind, wind shear and turbulence.

Suggestions

Comparison of Classical and Modern Landing Control System for a Small Unmanned Aerial Vehicle
Nugroho, Larasmoyo (2014-10-23)
Research presented in the following paper contrasted the modern optimal robust control method with classical one, applied for a landing control system of a small unmanned aerial vehicle. Philosophically speaking, the optimal control used H-2 method meets excellent dynamic performance, while the robustness given by the H infinity method diminish the effect of disturbance to the performance output. Accordingly, implemented mixed H2/H infinity optimal robust control method in this paper appear to meet a balanc...
Design and analysis of a mode-switching micro unmanned aerial vehicle
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (SAGE Publications, 2016-12-01)
In this study, design and analysis of a mode-switching vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) with level flight capability is considered. The design of the platform includes both multirotor and fixed-wing (FW) conventional airplane structures; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles including post-stall conditions. Trim conditions are obtained by solving constrained optimization problems. Linear analysis techniques are utilized for trim ...
Design and aerodynamic analysis of a VTOL tilt-wing UAV
Cakir, Hasan; Kurtuluş, Dilek Funda (2022-01-01)
The aerodynamic design and analysis of an Unmanned Air Vehicle, capable of vertical take-off and landing by employing fixed four rotors on the tilt-wing and two rotors on the tilt-tail, will be presented in this study. Both main wing and the horizontal tail can be tilted 90 degrees. During VTOL, transition and forward flight, aerodynamic and thrust forces have been employed. Different flight conditions, including the effects of angle of attack, side slip, wing tilt angle and control surfaces deflection angl...
Havacılık Nöroergonomisinde Optik Beyin Görüntüleme Uygulamaları
Çakır, Murat Perit (2021-06-01)
Pilotların, insansız hava aracı operatörlerinin, hava trafik kontrolörlerinin eğitim ve uçuş faaliyetleri sırasında bilişsel durumlarının takibini sağlayacak nesnel yöntemlerin geliştirilmesi uçuş emniyetinin sağlanması, eğitim süreçlerinin optimizasyonu ve yenilikçi insan-makine arayüzlerinin tasarımı bakımından kritik önem taşımaktadır. İşlevsel Yakın-Kızılötesi Tayfölçümü (functional near infrared spectroscopy – fNIRS) optik beyin görüntüleme teknolojisi gibi saha kullanımına uygun, portatif ve güvenilir...
Development of an autopilot for automatic landing of an unmanned aerial vehicle
Arıbal, Seçkin; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design of an autopilot and guidance system for an unmanned aerial vehicle. Classical (PID) and modern control (LQT, Sliding Mode) methods for autonomous navigation and landing in adverse weather conditions are implemented. Two different guidance systems are designed in order to navigate through waypoints during normal and/or emergency flight. The nonlinear Pioneer UAV model is used in controller development and simulations. Aircraft is linearized at different trim points and total a...
Citation Formats
V. Kargın, “Design of an autonomous landing control algorithm for a fixed wing UAV,” M.S. - Master of Science, Middle East Technical University, 2007.