Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A nonintrusive diagnostics technique for flame soot based on near-infrared emission spectrometry
Download
index.pdf
Date
2007
Author
Ayrancı Kılınç, Işıl
Metadata
Show full item record
Item Usage Stats
242
views
104
downloads
Cite This
A novel nonintrusive soot diagnostics methodology was developed, validated and applied for in-situ determination of temperature, volume fraction and refractive index of soot aggregates formed inside flames by using near-infrared emission spectrometry. Research was conducted in three main parts, first one addressing development and validation of a comprehensive "direct" model for simulation of line-of-sight radiative emission from axisymmetric sooty flames by coupling sub-models for radiative transfer, radiative properties and optical constants. Radiative property estimation for soot agglomerates was investigated by experimentally validating discrete dipole approximation against microwave measurements and using it as reference to assess applicability of simpler Rayleigh-Debye-Gans approximation for fractal aggregates (RDG-FA). Comparisons between predictions of two methods for soot-like model aggregates demonstrated that radiative property predictions of RDG-FA are acceptably accurate for relatively small soot aggregates encountered in small-scale flames. Part two concerns experimental investigation of an axisymmetric ethylene/air diffusion flame by Fourier Transform Near-Infrared spectroscopy. Measurement of line-of-sight emission intensity spectra was performed along with analyses on calibration, noise, uncertainty and reproducibility. A noise characterization approach was introduced to account for spatial fluctuations which were found to dominate over spectral noise. Final part focuses on development, evaluation and application of an inversion methodology that inputs spectral emission intensity measurements from optically thin flames, removes noise, identifies soot refractive index from spectral gradients and retrieves soot temperature and volume fraction fields by tomographic reconstruction. Validation with simulated data and favorable application to measurements indicate that proposed methodology is a promising option for nonintrusive soot diagnostics in flames.
Subject Keywords
Chemical Engineering.
,
Combustion diagnostics.
URI
http://etd.lib.metu.edu.tr/upload/12608498/index.pdf
https://hdl.handle.net/11511/17254
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
The influence of polymerization temperature on structure and properties of polyaniline
Yilmaz, Faris; Kucukyavuz, Zuhal (2009-01-31)
The influence of polymerization temperature (from -25 to +25 degrees C) on molecular weight, crystallinity, electrical conductivity, thermal and morphological properties of polyaniline has been investigated. Aniline was oxidized in an aqueous medium with ammonium persulfate and 1.0 M hydrochloric acid. The reaction mixture freezes below -10 degrees C and hence lithium chloride was used in sufficient amount to prevent freezing. As the reaction temperature decreases, both the molecular weight of polyaniline a...
The method of lines solution of discrete ordinates method for Nongray media experimental
Çayan, Fatma Nihan; Selçuk, Nevin; Department of Chemical Engineering (2006)
A radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) for the prediction of radiative heat transfer in nongray absorbing-emitting media was developed by incorporation of two different gas spectral radiative property models, namely wide band correlated-k (WBCK) and spectral line-based weighted sum of gray gases (SLW) models. Predictive accuracy and computational efficiency of the developed code were assessed by applying it to the predictions of source term distributions ...
Application of semi conductor films over glass/ceramic surfaces and their low temperature photocatalytic activity
Ersöz, Tuğçe İrfan; Karakaş, Gürkan; Department of Chemical Engineering (2009)
Semiconductor metal oxides can be induced by light with proper wavelength resulting in oxidation and reduction reactions for the transformation of water and oxygen molecules into active radicals. With this method, it is possible to obtain self-cleaning surfaces and products having antimicrobial properties. The aim of this study is to develop semiconductor metal oxide thin films for multifunctional glass products and the characterization of photocatalytic self cleaning and antimicrobial properties. As semico...
Determination of soot temperature, volume fraction and refractive index from flame emission spectrometry
Ayranci, Iail; Vaillon, Rodolphe; Selçuk, Nevin; Andre, Frederic; Escudie, Dany (2007-03-01)
An inversion scheme based on tomographic reconstruction of flame emission spectra has been developed for nonintrusive characterization of soot temperature and volume fraction fields within an optically thin axisymmetric flame by extracting characteristic information on soot refractive index from spectral gradients of emission spectra. Its performance is assessed by providing input data obtained from intensities simulated by a direct code based on experimental data for a flame available in the literature. Pr...
A numerical study of solidification and viscous dissipation effects on polymer melt flow in plane channels
Tutar, Mustafa; Karakuş, Ali (Walter de Gruyter GmbH, 2013-04-01)
The combined effects of solidification and viscous dissipation on the hydrodynamic and thermal behavior of polymer melt flow during the injection process in a straight plane channel of constant cross section are numerically studied by considering the shear-rate and temperature-dependent viscosity and transient-phase change behavior. A numerical finite volume method, in conjunction with a modified form of the Cross constitutive equation to account for shear rate, temperature-dependent viscosity changes and a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Ayrancı Kılınç, “A nonintrusive diagnostics technique for flame soot based on near-infrared emission spectrometry,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.