Aeroelastic stability prediction using flutter flight test data

Download
2007
Yıldız, Erdinç Nuri
Flutter analyses and tests are the major items in flight certification efforts required when a new air vehicle is developed or when a new external store is developed for an existing aircraft. The flight envelope of a new aircraft as well as the influence of aircraft modifications on an existing flight envelope can be safely determined only by flutter tests. In such tests, the aircraft is instrumented by accelerometers and exciters. Vibrations of the aircraft at specific dynamic pressures are measured and transmitted to a ground station via telemetry systems during flutter tests. These vibration data are analyzed online by using a flutter test software with various methods implemented in order to predict the safety margin with respect to flutter. Tests are performed at incrementally increasing dynamic pressures and safety regions of the flight envelope are determined step by step. Since flutter is a very destructive instability, tests are performed without getting too close to the flutter speed and estimations are performed by extrapolation. In this study, pretest analyses and flutter prediction methods that can be used in various flight conditions are investigated. Existing methods are improved and their applications are demonstrated with experiments. A novel method to predict limit cycle oscillations that are encountered in some modern fighter aircraft is developed. The prediction method developed in this study can effectively be used in cases where the nonlinearities in aircraft dynamics and air flow reduce the applicability of the classical prediction methods. Some further methods to reduce the adverse effects of these nonlinearities on the predictions are also developed.

Suggestions

Internal ballistic design optimization of a solid rocket motor
Açık, Sevda; Dursunkaya, Zafer; Department of Mechanical Engineering (2010)
Design process of a solid rocket motor with the objective of meeting certain mission requirements can be specified as a search for a best set of design parameters within the overall design constraints. In order to ensure that the best possible design amongst all achievable designs is being achieved, optimization is required during the design process. In this thesis, an optimization tool for internal ballistic design of solid rocket motors was developed. A direct search method Complex algorithm is used in th...
Air data system calibration for military transport aircraft modernization program
Özer, Hüseyin Erman; Özgen, Serkan; Department of Aerospace Engineering (2013)
This thesis presents the calibration processes of the pitot-static system, which is a part of the air data system of a military transport aircraft through flight tests. Tower fly-by method is used for air data system calibration. Altitude error caused by the position of the static port on the aircraft is determined by analyzing the data collected during four sorties with different weight, flap and landing gear configurations. The same data has been used to determine the airspeed measurement error. It has be...
Design and analysis of fixturing in assembly of sheet metal components of helicopters
Bayar, Fatih Mehmet; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2007)
Assembling of the compliant parts used in aviation industry is a challenging process. Assembly fixtures are quite important tools in this effort and widely used in industry. In fixturing of easily deformable sheet metal parts, besides restraining the rigid body motion of the parts, the possible deformations that may occur during the assembly process and the spring-back effect on the final product need to be taken in to consideration. In order to guarantee a successful assembling, in other words, to obtain t...
High by-pass turbofan engines aerothermodynamic design and optimization
Uysal, Selçuk Can; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2014)
The first step in Engine Design for an airframe is being the on-design cycle analysis. The results of this analysis are later used in off-design cycle analysis, which gives critical information about the performance of the engine on the whole flight envelope. Both analysis results are later used in turbomachinery component design. In order to accomplish these objectives, an engine design model in MATLAB Simulink® (named as Engine Design Model, EDM) is developed for Separate Flow Turbofan Engines. This engin...
Interior and exterior noise analysis of a single engine propeller aircraft using statistical energy analysis method
Kiremitçi, Utku; Çalışkan, Mehmet; Department of Mechanical Engineering (2009)
Two different Statistical Energy Analysis (SEA) models of a single turbo-prop engine propeller aircraft have been developed to predict the interior and exterior noise levels. The commercial software VA One is used for the analysis. First model is a pure SEA model developed with ribbed plates on the aircraft exterior. Second model is a hybrid model which employs finite element (FE) modeling of aircraft components with low modal density. These models have been analyzed for three different flight conditions, n...
Citation Formats
E. N. Yıldız, “Aeroelastic stability prediction using flutter flight test data,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.