Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of blast loading effect on regular steel building structures
Download
index.pdf
Date
2007
Author
Tahmilci, Fatih
Metadata
Show full item record
Item Usage Stats
337
views
467
downloads
Cite This
Concern about effect of explosives effect on engineering structures evolved after the damage of Second World War. Beginning from 90’s with the event of bombing Alfred P. Murrah Federal building located in Oklahoma City this concern deepened and with the attack to World Trade Center twin towers on September 11, 2001 it is peaked. Recent design codes mainly focus on earthquake resistant design and strengthening of the structures. These code design methodologies may sometimes satisfy current blast resistant design philosophy, but in general code compliant designs may not provide recognizable resistance to blast effect. Therefore designer should carry out earthquake resistant design with the blast resistant design knowledge in mind in order to be able to select the most suitable framing scheme that provide both earthquake and blast resistance. This is only possible if designer deeply understands and interprets the blast phenomenon. In this study, it is intended to introduce blast phenomenon, basic terminology, past studies, blast loading on structures, blast structure interaction, analysis methodologies for blast effect and analysis for blast induced progressive and disproportionate collapse. Final focus is made on a case study that is carried out to determine whether a regular steel structures already designed according to Turkish Earthquake Code 2007 requirements satisfy blast, thus progressive collapse resistance requirements or not.
Subject Keywords
Structural Engineering (General)
URI
http://etd.lib.metu.edu.tr/upload/12609052/index.pdf
https://hdl.handle.net/11511/17334
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Fragility based assessment of lowrise and midrise reinforced concrete frame buildings in Turkey
Ay, Bekir Özer; Erberik, Murat Altuğ; Department of Civil Engineering (2006)
In this study, structural vulnerability of reinforced concrete frame structures by considering the countryspecific characteristics is investigated to manage the earthquake risk and to develop strategies for disaster mitigation. Lowrise and midrise reinforced concrete structures, which constitute approximately 75% of the total building stock in Turkey, are focused in this fragilitybased assessment. The seismic design of 3, 5, 7 and 9story reinforced concrete frame structures are carried out according to the ...
Prediction of damage in R/C shear panels subjected to reversed cyclic loading
Hindi, R; Mansour, M; Dicleli, Murat (Informa UK Limited, 2005-01-01)
In this paper, the damage prediction of shear-dominated reinforced concrete (RC) elements subjected to reversed cyclic shear is presented using an existing damage model. The damage model is primarily based on the monotonic energy dissipating capacity of structural elements before and after the application of reversed cyclic loading. Therefore, it could be universally applicable to different types of structural members, including shear-dominated RC members. The applicability of the damage model to shear-domi...
Cost-benefit analysis for various rehabilitation strategies
Çetinceli, Serkan; Yakut, Ahmet; Department of Civil Engineering (2005)
Over the last decade, six major earthquakes that occurred in Turkey dramatically demonstrated the poor performance of the buildings that were designed and constructed far from Turkish seismic code̕s requirements. The Marmara region, where most of the population and industry is located, is in the active seismic zone. With the rising cost of damages due to earthquakes, the necessity of the cost-benefit analysis for various rehabilitation strategies used in existing buildings has become a major concern for the...
Fragility based assessment of lowrise and midrise reinforced concrete frame buildings in turkey using Düzce damage database
Özün, Ahsen; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
In this study, the seismic fragility assessment of low-rise and mid-rise reinforced concrete frame buildings which constitute approximately 75 % of the total building stock in Turkey is investigated to quantify the earthquake risk. The inventory used in this study is selected from Düzce damage database which was compiled after the devastating 1999 earthquakes in the Marmara region. These buildings are not designed according to the current code regulations and the supervision in the construction phase is not...
Calculation of Detonation Properties of Gaseous Explosives Using Generalized Reduced Gradient Nonlinear Optimization
Ulaş, Abdullah (Wiley, 2011-08-01)
In this paper, a study on the development of a numerical modeling of the detonation of C-H-N-O-based gaseous explosives is presented. In accordance with the numerical model, a FORTRAN computer code named GasPX has been developed to compute both the detonation point and the detonation properties on the basis of Chapman-Jouguet (C-J) theory. The determination of the detonation properties in GasPX is performed in chemical equilibrium and steady-state conditions. GasPX has two improvements over other thermodyna...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Tahmilci, “Analysis of blast loading effect on regular steel building structures,” M.S. - Master of Science, Middle East Technical University, 2007.