Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Near-surface topology of unmanned combat air vehicle planform: Reynolds number dependence
Date
2005-09-01
Author
Elkhoury, M
Yavuz, Mehmet Metin
Rockwell, D
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
The Reynolds number dependence of the near-surface flow structure and topology on a representative unmanned combat air vehicle planform is characterized using a technique of high-image-density particle image velocimetry, to complement classical dye visualization. Patterns of streamline topology, including bifurcation lines, as well as contours of streamwise and transverse velocity, surface-normal vorticity, and Reynolds stress correlation, all immediately adjacent to the surface of the planform, provide quantitative indicators. At low angle of attack, these indicators show significant alterations with Reynolds number, in accord with large variations of patterns of vortex breakdown and vortex interaction visualized by dye and substantial alterations of flow patterns in the crossflow plane, including reattachment phenomena, which are interpreted with patterns of velocity, streamlines, and streamwise vorticity. On the other hand, at moderate angle of attack, the near-surface quantitative indicators show much less sensitivity to Reynolds number, which is in line with weak variations of the onset of vortex breakdown with changes in Reynolds number.
Subject Keywords
Aerospace Engineering
URI
https://hdl.handle.net/11511/38116
Journal
JOURNAL OF AIRCRAFT
DOI
https://doi.org/10.2514/1.9777
Collections
Department of Mechanical Engineering, Article