Design and simulation of an integrated active yaw control system for road vehicles

Download
2008
Tekin, Gökhan
Active vehicle safety systems for road vehicles play an important role in accident prevention. In recent years, rapid developments have been observed in this area with advancing technology and electronic control systems. Active yaw control is one of these subjects, which aims to control the vehicle in case of any impending spinning or plowing during rapid and/or sharp maneuver. In addition to the development of these systems, integration and cooperation of these independent control mechanisms constitutes the current trend in active vehicle safety systems design. In this thesis, design methodology and simulation results of an active yaw control system for two axle road vehicles have been presented. Main objective of the yaw control system is to estimate the desired yaw behavior of the vehicle according to the demand of the driver and track this desired behavior accurately. The design procedure follows a progressive method, which first aims to design the yaw control scheme without regarding any other stability parameters, followed by the development of the designed control scheme via taking other stability parameters such vehicle sideslip angle into consideration. A two degree of freedom vehicle model (commonly known as “Bicycle Model”) is employed to model the desired vehicle behavior. The design of the controller is based on Fuzzy Logic Control, which has proved itself useful for complex nonlinear design problems. Afterwards, the proposed yaw controller has been modified in order to limit the vehicle sideslip angle as well. Integration of the designed active yaw control system with other safety systems such as Anti-Lock Braking System (ABS) and Traction Control System (TCS) is another subject of this study. A fuzzy logic based wheel slip controller has also been included in the study in order to integrate two different independent active systems to each other, which, in fact, is a general design approach for real life applications. This integration actually aims to initiate and develop the integration procedure of the active yaw control system with the (ABS). An eight degree of freedom detailed vehicle model with nonlinear tire model is utilized to represent the real vehicle in order to ensure the validity of the results. The simulation is held in MATLAB/Simulink environment, which has provided versatile design and simulation capabilities for this study. Wide-ranging simulations include various maneuvers with different road conditions have been performed in order to demonstrate the performance of the proposed controller.

Suggestions

Design and simulation of a traction control system for an integrated active safety system for road vehicles
Oktay, Görkem; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2008)
Active safety systems for road vehicles make a crucial preventive contribution to road safety. In recent years, technological developments and the increasing demand for road safety have resulted in the integration and cooperation of these individual active safety systems. Traction control system (TCS) is one of these individual systems, which is capable of inhibiting wheel-spin during acceleration of the vehicle on slippery surfaces. In this thesis, design methodology and simulation results of a traction co...
Design and simulation of an ABS for an integrated active safety system for road vehicles
Şahin, Murat; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2007)
Active safety systems for road vehicles have been improved considerably in recent years along with technological advances and the increasing demand for road safety. In the development route of active safety systems which started with introduction of digital controlled ABS in the late seventies, vehicle stability control systems have been developed which today, with an integration approach, incorporate ABS and other previously developed active safety technologies. ABS, as a main part of this new structure, s...
Identification of handling models for road vehicles
Arıkan, Kutluk Bilge; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2008)
This thesis reports the identification of linear and nonlinear handling models for road vehicles starting from structural identifiability analysis, continuing with the experiments to acquire data on a vehicle equipped with a sensor set and data acquisition system and ending with the estimation of parameters using the collected data. The 2 degrees of freedom (dof) linear model structure originates from the well known linear bicycle model that is frequently used in handling analysis of road vehicles. Physical...
GPS based altitude control of an unmanned air vehicle using digital terrain elevation data
Ataç, Selçuk; Platin, Bülent Emre; Department of Mechanical Engineering (2006)
In this thesis, an unmanned air vehicle (UAV) is used to develop a prototype base test platform for flight testing of new control algorithms and avionics for advanced UAV system development applications. A control system that holds the UAV at a fixed altitude above the ground is designed and flight tested. Only the longitudinal motion of the UAV is considered during the controller design, hence its lateral motions are controlled manually by a remote control unit from the ground. UAV’s altitude with respect ...
Design, analysis and experimental study of a novel side thorax impactor to be used in pedestrian protection tests for flat front vehicles
Saraç Karadeniz, Sevgi; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2021-10)
Pedestrian protection is crucial and the vehicle manufacturers put more and more effort to make vehicles safer for pedestrians in case of pedestrian involved accidents. Injuries and fatalities are very frequent and severe in pedestrian involved accidents because the pedestrians are much more vulnerable when compared to the vehicle occupants as they do not have any protection like airbags or seatbelts. The current pedestrian protection regulations focus on the tests of bonnet type passenger cars for the head...
Citation Formats
G. Tekin, “Design and simulation of an integrated active yaw control system for road vehicles,” M.S. - Master of Science, Middle East Technical University, 2008.