Identification of handling models for road vehicles

Download
2008
Arıkan, Kutluk Bilge
This thesis reports the identification of linear and nonlinear handling models for road vehicles starting from structural identifiability analysis, continuing with the experiments to acquire data on a vehicle equipped with a sensor set and data acquisition system and ending with the estimation of parameters using the collected data. The 2 degrees of freedom (dof) linear model structure originates from the well known linear bicycle model that is frequently used in handling analysis of road vehicles. Physical parameters of the bicycle model structure are selected as the unknown parameter set that is to be identified. Global identifiability of the model structure is analysed, in detail, and concluded according to various available sensor sets. Physical parameters of the bicycle model structure are estimated using prediction error estimation method. Genetic algorithms are used in the optimization phase of the identification algorithm to overcome the difficulty in the selection of initial values for parameter estimates. Validation analysis of the identified model is also presented. Identified model is shown to track the system response successfully. Following the linear model identification, identification of 3 dof nonlinear models are studied. Local identifiability analysis is done and optimal input is designed using the same procedure for linear model structure identification. Practical identifiability analysis is performed using Fisher Information Matrix. Physical parameters are estimated using the data from simulated experiments. High accuracy estimates are obtained. Methodology for nonlinear handling model identification is presented.

Suggestions

Identification of linear handling models for road vehicles
ARIKAN, KUTLUK BİLGE; Ünlüsoy, Yavuz Samim; Korkmaz, I.; Celebi, A. O. (2008-01-01)
This study reports the identification of linear handling models for road vehicles starting from structural identifiability analysis, continuing with the experiments to acquire data on a vehicle equipped with a sensor set and data acquisition system, and ending with the estimation of parameters using the collected data. The model structure originates from the well-known linear bicycle model that is frequently used in handling analysis of road vehicles. Physical parameters of the bicycle model structure are s...
Modeling and simulation of a maneuvering ship
Pakkan, Sinan; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
This thesis documents the studies conducted in deriving a mathematical model representing the dynamics of a maneuvering ship to be implemented as part of an interactive real-time simulation system, as well as the details and results of the implementation process itself. Different effects on the dynamics of ship motions are discussed separately, meaning that the effects are considered to be applied to the system one at a time and they are included in the model simply by the principle of superposition. The mo...
Sliding mode control of linearly actuated nonlinear systems
Durmaz, Burak; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2009)
This study covers the sliding mode control design for a class of nonlinear systems, where the control input affects the state of the system linearly as described by (d/dt)x=A(x)x+B(x)u+d(x). The main streamline of the study is the sliding surface design for the system. Since there is no systematic way of designing sliding surfaces for nonlinear systems, a moving sliding surface is designed such that its parameters are determined in an adaptive manner to cope with the nonlinearities of the system. This adapt...
Construction of an experimental radar system
Kılıçoğlu, Nezaket; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2010)
In this thesis, an Experimental Radar System is designed and constructed for use in experimental radar studies such as clutter measurement and target detection, both in the laboratory and outdoor. COTS laboratory equipments are utilized as hardware elements of the radar and MATLAB is used as signal processing and user interface software tool. Vector signal generator (as transmitter), spectrum analyzer with vector signal analysis (as receiver), a high power amplifier, a low noise amplifier, horn antennas and...
3-D humanoid gait simulation using an optimal predictive control
Özyurt, Gökhan; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2005)
In this thesis, the walking of a humanoid system is simulated applying an optimal predictive control algorithm. The simulation is built using Matlab and Simulink softwares. Four separate physical models are developed to represent the single support and the double support phases of a full gait cycle. The models are three dimensional and their properties are analogous to the human̕s. In this connection, the foot models in the double support phases include an additional joint which connects the toe to the foot...
Citation Formats
K. B. Arıkan, “Identification of handling models for road vehicles,” Ph.D. - Doctoral Program, Middle East Technical University, 2008.