Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Object extraction from ımages/videos using a genetic algorithm based approach
Download
index.pdf
Date
2008
Author
Yılmaz, Turgay
Metadata
Show full item record
Item Usage Stats
117
views
123
downloads
Cite This
The increase in the use of digital video/image has showed the need for modeling and querying the semantic content in them. Using manual annotation techniques for defining the semantic content is both costly in time and have limitations on querying capabilities. So, the need for content based information retrieval in multimedia domain is to extract the semantic content in an automatic way. The semantic content is usually defined with the objects in images/videos. In this thesis, a Genetic Algorithm based object extraction and classification mechanism is proposed for extracting the content of the videos and images. The object extraction is defined as a classification problem and a Genetic Algorithm based classifier is proposed for classification. Candidate objects are extracted from videos/images by using Normalized-cut segmentation and sent to the classifier for classification. Objects are defined with the Best Representative and Discriminative Feature (BRDF) model, where features are MPEG-7 descriptors. The decisions of the classifier are calculated by using these features and BRDF model. The classifier improves itself in time, with the genetic operations of GA. In addition to these, the system supports fuzziness by making multiple categorization and giving fuzzy decisions on the objects. Externally from the base model, a statistical feature importance determination method is proposed to generate BRDF model of the categories automatically. In the thesis, a platform independent application for the proposed system is also implemented.
Subject Keywords
Computer enginnering.
,
Computer software.
URI
http://etd.lib.metu.edu.tr/upload/12609263/index.pdf
https://hdl.handle.net/11511/17503
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Multi-resolution visualization of large scale protein networks enriched with gene ontology annotations
Yaşar, Sevgi; Can, Tolga; Department of Computer Engineering (2009)
Genome scale protein-protein interactions (PPIs) are interpreted as networks or graphs with thousands of nodes from the perspective of computer science. PPI networks represent various types of possible interactions among proteins or genes of a genome. PPI data is vital in protein function prediction since functions of the cells are performed by groups of proteins interacting with each other and main complexes of the cell are made of proteins interacting with each other. Recent increase in protein interactio...
Fuzzy spatial data cube construction and its use in association rule mining
Işık, Narin; Yazıcı, Adnan; Department of Computer Engineering (2005)
The popularity of spatial databases increases since the amount of the spatial data that need to be handled has increased by the use of digital maps, images from satellites, video cameras, medical equipment, sensor networks, etc. Spatial data are difficult to examine and extract interesting knowledge; hence, applications that assist decision-making about spatial data like weather forecasting, traffic supervision, mobile communication, etc. have been introduced. In this thesis, more natural and precise knowle...
Improving interactive classification of satellite image content
Tekkaya, Gökhan; Atalay, Mehmet Volkan; Department of Computer Engineering (2007)
Interactive classication is an attractive alternative and complementary for automatic classication of satellite image content, since the subject is visual and there are not yet powerful computational features corresponding to the sought visual features. In this study, we improve our previous attempt by building a more stable software system with better capabilities for interactive classication of the content of satellite images. The system allows user to indicate a few number of image regions that contain a...
Fuzzy querying im XML databases
Üstünkaya, Ekin; Yazıcı, Adnan; Department of Computer Engineering (2004)
Real-world information containing subjective opinions and judgments has emerged the need to represent complex and imprecise data in databases. Additionally, the challenge of transferring information between databases whose data storage methods are not compatible has been an important research topic. Extensible Markup Language (XML) has the potential to meet these challenges since it has the ability to represent complex and imprecise data. In this thesis, an XML based fuzzy data representation and querying s...
Extending Correlation Filter-Based Visual Tracking by Tree-Structured Ensemble and Spatial Windowing
Gundogdu, Erhan; Özkan, Huseyin; Alatan, Abdullah Aydın (Institute of Electrical and Electronics Engineers (IEEE), 2017-11-01)
Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Yılmaz, “Object extraction from ımages/videos using a genetic algorithm based approach,” M.S. - Master of Science, Middle East Technical University, 2008.