Eta-eta prime mixing in chiral perturbation theory

Download
2008
Kokulu, Ahmet
Quantum Chromodynamics (QCD) is believed to be the theory of strong interactions. At high energies, it has been successfully applied to explain the interactions in accelerators. At these energies, the method used to do the calculations is perturbation theory. But at low energies, since the strong coupling constant becomes large, perturbation theory is no longer applicable. Hence, one needs non-perturbative approaches. Some of these approaches are based on the fundamental QCD Lagrangian, such as the QCD sum rules or lattice calculations. Some others use an effective theory approach to relate experimental observables one to the other. Chiral Perturbation Theory (ChPT) is one of these approaches. In this thesis, we make a review of chiral perturbation theory and its applications to study the mixing phenomenon between the neutral pseudoscalar mesons eta and eta-prime.

Suggestions

Entanglement measures
Uyanık, Kıvanç; İpekoğlu, Yusuf; Department of Physics (2008)
Being a puzzling feature of quantum mechanics, entanglement caused many debates since the infancy days of quantum theory. But it is the last two decades that it has started to be seen as a resource for physical tasks which are not possible or extremely infeasible to be done classically. Popular examples are quantum cryptography - secure communication based on laws of physics - and quantum computation - an exponential speedup for factoring large integers. On the other hand, with current technological restric...
Entanglement transformations
Kıntaş, Seçkin; Turgut, Sadi; Department of Physics (2009)
Entanglement is a special correlation of the quantum states of two or more particles. It is also a useful resource enabling us to complete tasks that cannot be done by classical means. As a result, the transformation of entangled states of distant particles by local means arose as an important problem in quantum information theory. In this thesis, we first review some of the studies done on the entanglement transformations. We also develop the necessary and sufficient conditions for the deterministic transf...
İnvestigating the semileptonic B to K1(1270,1400) decays in QCD sum rules
Dağ, Hüseyin; Zeyrek, Mehmet Tevfik; Department of Physics (2010)
Quantum Chromodynamics(QCD) is part of the Standard Model(SM) that describes the interaction of fundamental particles. In QCD, due to the fact that strong coupling constant is large at low energies, perturbative approaches do not work. For this reason, non-perturbative approaches have to be used for studying the properties of hadrons. Among several non-perturbative approaches, QCD sum rules is one of the reliable methods which is applied to understand the properties of hadrons and their interactions.\ In th...
CP asymmetry in charged Higgs decays to chargino-neutralino pairs
Frank, Mariana; Turan, İsmail (American Physical Society (APS), 2007-10-01)
We analyze the charge-parity (CP) asymmetry in the charged Higgs boson decays to chargino-neutralino pairs, H-+/- -> chi(+/-)(i)chi(0)(j), i = 1, 2, j = 1,...,4. We show first that these modes have a large branching ratio for m(H)(+/-) greater than or similar to 600 GeV. We use Cutkosky rules to obtain the analytical formulas needed for the evaluation of the asymmetry under consideration. We then calculate the CP asymmetry in chargino-neutralino decays by including supersymmetric mass bounds, as well as con...
Quantum mechanics on curved hypersurfaces
Olpak, Mehmet Ali; Tekin, Bayram; Department of Physics (2010)
In this work, Schrödinger and Dirac equations will be examined in geometries that confine the particles to hypersurfaces. For this purpose, two methods will be considered. The first method is the thin layer method which relies on explicit use of geometrical relations and the squeezing of a certain coordinate of space (or spacetime). The second is Dirac’s quantization procedure involving the modification of canonical quantization making use of the geometrical constraints. For the Dirac equation, only the fir...
Citation Formats
A. Kokulu, “Eta-eta prime mixing in chiral perturbation theory,” M.S. - Master of Science, Middle East Technical University, 2008.