Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Entanglement transformations
Download
index.pdf
Date
2009
Author
Kıntaş, Seçkin
Metadata
Show full item record
Item Usage Stats
48
views
27
downloads
Cite This
Entanglement is a special correlation of the quantum states of two or more particles. It is also a useful resource enabling us to complete tasks that cannot be done by classical means. As a result, the transformation of entangled states of distant particles by local means arose as an important problem in quantum information theory. In this thesis, we first review some of the studies done on the entanglement transformations. We also develop the necessary and sufficient conditions for the deterministic transformation of W-type states.
Subject Keywords
Physics.
URI
http://etd.lib.metu.edu.tr/upload/3/12611363/index.pdf
https://hdl.handle.net/11511/19324
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Entanglement measures
Uyanık, Kıvanç; İpekoğlu, Yusuf; Department of Physics (2008)
Being a puzzling feature of quantum mechanics, entanglement caused many debates since the infancy days of quantum theory. But it is the last two decades that it has started to be seen as a resource for physical tasks which are not possible or extremely infeasible to be done classically. Popular examples are quantum cryptography - secure communication based on laws of physics - and quantum computation - an exponential speedup for factoring large integers. On the other hand, with current technological restric...
İnvestigating the semileptonic B to K1(1270,1400) decays in QCD sum rules
Dağ, Hüseyin; Zeyrek, Mehmet Tevfik; Department of Physics (2010)
Quantum Chromodynamics(QCD) is part of the Standard Model(SM) that describes the interaction of fundamental particles. In QCD, due to the fact that strong coupling constant is large at low energies, perturbative approaches do not work. For this reason, non-perturbative approaches have to be used for studying the properties of hadrons. Among several non-perturbative approaches, QCD sum rules is one of the reliable methods which is applied to understand the properties of hadrons and their interactions.\ In th...
Quantum mechanics on curved hypersurfaces
Olpak, Mehmet Ali; Tekin, Bayram; Department of Physics (2010)
In this work, Schrödinger and Dirac equations will be examined in geometries that confine the particles to hypersurfaces. For this purpose, two methods will be considered. The first method is the thin layer method which relies on explicit use of geometrical relations and the squeezing of a certain coordinate of space (or spacetime). The second is Dirac’s quantization procedure involving the modification of canonical quantization making use of the geometrical constraints. For the Dirac equation, only the fir...
Black hole collisions at the speed of light
Şentürk, Çetin; Karasu, Atalay; Department of Physics (2010)
The main purpose of this work is to study the collision of two black holes and the energy loss due to the gravitational waves emitted during this collision in the framework of general relativity. For this purpose we first study plane wave geometries and their collisions. More realistic collisions are the pp-wave collisions. As an analytic treatment of this problem, we investigate the head-on collision of two ultra-relativistic black holes. Treating the problem perturbatively, we extract the news function to...
Gödel Spacetime
Kavuk, Mehmet; Sarıoğlu, Bahtiyar Özgür; Department of Physics (2005)
In this thesis properties of the Gödel spacetime are analyzed and it is explicitly shown that there exist closed timelike curves in this spacetime. Geodesic motions for massive particles and light rays are investigated. One observes the focusing effect as a result of the solution of the geodesic equations. The time it takes for a free particle released from a point to come back to its starting point is calculated. A geometrical interpretation of the Gödel spacetime is given and the question of what the Göde...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Kıntaş, “Entanglement transformations,” M.S. - Master of Science, Middle East Technical University, 2009.