Entanglement transformations

Download
2009
Kıntaş, Seçkin
Entanglement is a special correlation of the quantum states of two or more particles. It is also a useful resource enabling us to complete tasks that cannot be done by classical means. As a result, the transformation of entangled states of distant particles by local means arose as an important problem in quantum information theory. In this thesis, we first review some of the studies done on the entanglement transformations. We also develop the necessary and sufficient conditions for the deterministic transformation of W-type states.

Suggestions

Entanglement measures
Uyanık, Kıvanç; İpekoğlu, Yusuf; Department of Physics (2008)
Being a puzzling feature of quantum mechanics, entanglement caused many debates since the infancy days of quantum theory. But it is the last two decades that it has started to be seen as a resource for physical tasks which are not possible or extremely infeasible to be done classically. Popular examples are quantum cryptography - secure communication based on laws of physics - and quantum computation - an exponential speedup for factoring large integers. On the other hand, with current technological restric...
İnvestigating the semileptonic B to K1(1270,1400) decays in QCD sum rules
Dağ, Hüseyin; Zeyrek, Mehmet Tevfik; Department of Physics (2010)
Quantum Chromodynamics(QCD) is part of the Standard Model(SM) that describes the interaction of fundamental particles. In QCD, due to the fact that strong coupling constant is large at low energies, perturbative approaches do not work. For this reason, non-perturbative approaches have to be used for studying the properties of hadrons. Among several non-perturbative approaches, QCD sum rules is one of the reliable methods which is applied to understand the properties of hadrons and their interactions.\ In th...
Quantum mechanics on curved hypersurfaces
Olpak, Mehmet Ali; Tekin, Bayram; Department of Physics (2010)
In this work, Schrödinger and Dirac equations will be examined in geometries that confine the particles to hypersurfaces. For this purpose, two methods will be considered. The first method is the thin layer method which relies on explicit use of geometrical relations and the squeezing of a certain coordinate of space (or spacetime). The second is Dirac’s quantization procedure involving the modification of canonical quantization making use of the geometrical constraints. For the Dirac equation, only the fir...
Black hole collisions at the speed of light
Şentürk, Çetin; Karasu, Atalay; Department of Physics (2010)
The main purpose of this work is to study the collision of two black holes and the energy loss due to the gravitational waves emitted during this collision in the framework of general relativity. For this purpose we first study plane wave geometries and their collisions. More realistic collisions are the pp-wave collisions. As an analytic treatment of this problem, we investigate the head-on collision of two ultra-relativistic black holes. Treating the problem perturbatively, we extract the news function to...
Gödel Spacetime
Kavuk, Mehmet; Sarıoğlu, Bahtiyar Özgür; Department of Physics (2005)
In this thesis properties of the Gödel spacetime are analyzed and it is explicitly shown that there exist closed timelike curves in this spacetime. Geodesic motions for massive particles and light rays are investigated. One observes the focusing effect as a result of the solution of the geodesic equations. The time it takes for a free particle released from a point to come back to its starting point is calculated. A geometrical interpretation of the Gödel spacetime is given and the question of what the Göde...
Citation Formats
S. Kıntaş, “Entanglement transformations,” M.S. - Master of Science, Middle East Technical University, 2009.