Development of an effective single layer micro-perforated sound absorber

Download
2008
Önen, Onursal
Micro-perforated sound absorbers with sub-millimeter size holes can provide high absorption coefficients. Various types of micro-perforated absorbers are now available in literature for different applications. This thesis presents results of work on the development of an effective single layer micro-perforated sound absorber from the commercial composite material Parabeam with micro diameter holes drilled on one side. Parabeam is used as a structural material made from a fabric woven out of a E-glass yarn and consists of two decklayers bonded together by vertical piles in a sandwich structure with piles (thick fibers) woven into the decklayers. The thesis includes, the analytical model developed for prediction of absorption coefficients, finite element solution using commercial software MSC.ACTRAN and experimental results obtained from impedance tube measurements. Different absorption characteristics can be achieved by variations in hole diameter and hole spacing. Based on the developed models, an optimization is performed to obtain an efficient absorber configuration. It has been anticipated that several different and interesting applications can be deduced by combining structural and sound absorption properties of this.

Suggestions

Design of a single layer micro-perforated sound absorber by finite element analysis
Onen, Onursal; Çalışkan, Mehmet (Elsevier BV, 2010-01-01)
Micro-perforated sound absorbers with sub-millimeter size holes can provide high absorption coefficients. This paper presents results of work on the development of an effective single layer micro-perforated sound absorber from the commercial composite material Parabeam (R) with micro diameter holes drilled on one side. Parabeam (R) is used as a structural material made from a fabric woven out of a E-glass yarn and consists of two decklayers bonded together by vertical piles in a sandwich structure with pile...
Transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites
Şen, Özge; Turhan, Doğan; Department of Engineering Sciences (2005)
In this study, transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites is investigated. Thermal effects, in addition to mechanical effects, are taken into consideration. A generalized thermoelasticity theory which incorporates the temperature rate among the constitutive variables and is referred to as temperature-rate dependent thermoelasticity theory is employed. This theory predicts finite heat propagation speeds. The body considered in this thesis consists o...
Exact solution of rotating FGM shaft problem in the elastoplastic state of stress
Akis, Tolga; Eraslan, Ahmet Nedim (Springer Science and Business Media LLC, 2007-10-01)
Plane strain analytical solutions to estimate purely elastic, partially plastic and fully plastic deformation behavior of rotating functionally graded (FGM) hollow shafts are presented. The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction. Tresca's yield criterion and its associated flow rule are used to formulate three different plastic regions for an ideal plastic material. By considerina different material compositions as well as a wide range of bore radi...
Modeling of particle filled resin impregnation in compression resin transfer molding
Şaş, Hatice Sinem; Erdal Erdoğmuş, Merve; Department of Mechanical Engineering (2010)
Compression Resin Transfer Molding (CRTM) is an advanced liquid molding process for producing continuous fiber-reinforced composite parts in relatively large dimensions and with high fiber volume fractions. This thesis investigates this process for the purpose of producing continuous fiber reinforced composites with particle fillers. In many composites, fillers are used within the resin for various reasons such as cost reduction and improvement of properties. However, the presence of fillers in a process in...
Design and qualification of a semi-anechoic chamber and ınvestigation into noise characteristics of a vacuum vleaner
Kayhan, Cihan; Eralp, O. Cahit; Department of Mechanical Engineering (2008)
In this study a centrifugal fan is studied for noise characteristics and measurements in a semi- anechoic room. A semi-anechoic room is constructed inside Fluid Mechanics Laboratory of Mechanical Engineering Department has been qualified with respect to ISO 3745 standard. The fan characteristic is obtained as proposed in AMCA standards 210-75, by simply measuring the voltage and current of the motor during operation and calculating the power consumption of the assembly. Noise measurements are taken using tw...
Citation Formats
O. Önen, “Development of an effective single layer micro-perforated sound absorber,” M.S. - Master of Science, Middle East Technical University, 2008.