Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Flight simulation and control of a helicopter
Download
index.pdf
Date
2008
Author
Erçin, Gülsüm Hilal
Metadata
Show full item record
Item Usage Stats
4
views
1
downloads
In this thesis the development of a nonlinear simulation model of a utility helicopter and the design of its automatic flight control system is addressed. In the first part of this thesis, the nonlinear dynamic model for a full size helicopter is developed using the MATLAB/SIMULINK environment. The main rotor (composed of inflow and flapping dynamics parts), tail rotor, fuselage, vertical stabilizer, horizontal stabilizer of the helicopter are modeled in order to obtain the total forces and moments needed for the flight simulation of the helicopter. Total forces and moments are used in 6 degrees of freedom equations of motion model and helicopter states are calculated for the specified flight conditions such as hover and forward flight. Trim and linearization programs are developed. The linearized models of hover and forward flight conditions are used for the automatic flight control system design. Automatic flight control system model consists of necessary systems in order to ease the pilot control of the helicopter. A classical inner stability loop and outer flight directory mode approach is taken to design the automatic flight control system. For the inner stability loop both classical rate feedback and truncated system state feedback control approaches are used. The outer loop modes implemented are heading hold, attitude hold (pitch, roll), altitude acquire and hold mode for hover condition and heading hold, attitude hold (pitch, roll), altitude acquire and hold mode and airspeed hold for forward flight condition. Finally, the success of the controllers are demonstrated through nonlinear simulations for different flight directory modes in hover and forward flight conditions.
Subject Keywords
Aerospace engineering.
URI
http://etd.lib.metu.edu.tr/upload/3/12610194/index.pdf
https://hdl.handle.net/11511/18024
Collections
Graduate School of Natural and Applied Sciences, Thesis