Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Adaptation of a control system to varying missile configurations
Download
index.pdf
Date
2009
Author
Ekinci, Özgür
Metadata
Show full item record
Item Usage Stats
231
views
98
downloads
Cite This
Varying missile configurations may create uncertainty for a missile control algorithm developed with linear control theory, for instance the control system performance requirements may not be satisfied anymore. Missile configuration may change during the missile design period due to variations in subsystem locations, subsystem weights and missile geometry. Likewise, burning propellant, deployment of aerodynamic surfaces and wings with varying sweep angle can be considered as in-flight missile configuration changes. This thesis study addresses development and analysis of an adaptive missile control algorithm to account for the uncertain effects caused by varying missile configuration. Control algorithms, designed using pole placement, are augmented with adaptive neural networks. The resulting controller is a type of model reference adaptive controller. Adaptation characteristics of the augmented control algorithms are investigated to changing center of pressure location and missile geometry. Analyses are performed for three different missile configurations using simulation.
Subject Keywords
Aerospace engineering.
URI
http://etd.lib.metu.edu.tr/upload/3/12611361/index.pdf
https://hdl.handle.net/11511/19206
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
A new steering law for redundant control moment gyroscope clusters
Tekinalp, Ozan (Elsevier BV, 2005-10-01)
A new inverse kinematics algorithm is developed that may provide singularity avoidance or may be used for quick transition through a singularity with small torque errors. To avoid singularities, angular momentum trajectory of the control moment gyro cluster during the maneuver is to be simulated in advance for the calculation of singularity free gimbal histories. The steering law proposed accurately generates the required torques making it suitable to be used in a feedback system. The desired gimbal traject...
Development of control allocation methods for satellite attitude control
Elmas, Tuba Çiğdem; Tekinalp, Ozan; Department of Aerospace Engineering (2010)
This thesis addresses the attitude control of satellites with similar and dissimilar actuators and control allocation methods on maneuvering. In addition, the control moment gyro (CMG) steering with gyroscopes having limited gimbal angle travel is also addressed. Full Momentum envelopes for a cluster of four CMG's are obtained in a pyramid type mounting arrangement. The envelopes when gimbal travel is limited to plus-minus 90 degree are also obtained. The steering simulations using Moore Penrose (MP) pseudo...
Flight simulation and control of a helicopter
Erçin, Gülsüm Hilal; Tekinalp, Ozan; Department of Aerospace Engineering (2008)
In this thesis the development of a nonlinear simulation model of a utility helicopter and the design of its automatic flight control system is addressed. In the first part of this thesis, the nonlinear dynamic model for a full size helicopter is developed using the MATLAB/SIMULINK environment. The main rotor (composed of inflow and flapping dynamics parts), tail rotor, fuselage, vertical stabilizer, horizontal stabilizer of the helicopter are modeled in order to obtain the total forces and moments needed f...
Simulation of Rapidly Maneuvering Airfoils with Synthetic Jet Actuators
Jee, SolKeun; Lopez Mejia, Omar D.; Moser, Robert D.; Muse, Jonathan A.; Kutay, Ali Türker; Calise, Anthony J. (American Institute of Aeronautics and Astronautics (AIAA), 2013-08-01)
Synthetic jet actuators are investigated for rapidly maneuvering airfoils that are regulated by a closed-loop control system. To support active flow-control simulations performed here, the closed-loop system and vehicle dynamics are coupled with computational fluid dynamics. High-frequency sinusoidal pitching simulations with and without synthetic jet actuation indicate that the current synthetic jet actuators provide bidirectional change in aerodynamic forces during rapid maneuvers whose time scales are of...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Ekinci, “Adaptation of a control system to varying missile configurations,” M.S. - Master of Science, Middle East Technical University, 2009.