Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Interference suppression by using space-time adaptive processing for airborne radar
Download
index.pdf
Date
2008
Author
Eryiğit, Özgür
Metadata
Show full item record
Item Usage Stats
263
views
112
downloads
Cite This
Space-Time Adaptive Processing (STAP) is an effective method in Ground Moving Target Indicator (GMTI) operation of airborne radars. Clutter suppression is the key to successful MTI operation. Airborne radars are different than the ground based ones in regard to clutter due to the displacement of the platform during operation. When STAP methods are to be investigated, one needs to have accurate signal models while evaluating performance. In this thesis, a comprehensive received signal model is developed first for an airborne antenna array. The impacts of the aircraft motion and irregularities in it, aircraft displacement during reception, intrinsic clutter motion and radar parameters have been accounted in the model and incorporated into a simulator environment. To verify the correctness of the signal simulator, the classical DPCA approach and optimum STAP methods are inspected.
Subject Keywords
Electrical engineering.
,
Telecommunication.
URI
http://etd.lib.metu.edu.tr/upload/12609493/index.pdf
https://hdl.handle.net/11511/18243
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Investigations on frequency beam scanning microstrip (bsms) antenna structures
Dündar, Burhan; Birand, Mehmet Tuncay; Department of Electrical and Electronics Engineering (2009)
Beam scanning Microstrip (BSMS) antenna is designed to work at center frequency of 10 GHz for using in the scanning applications of 9 GHz to 11 GHz band. The design parameters are defined and by using an Electromagnetic Simulation software program, the parameters are optimized. A Beam Scanning Microstrip Antenna is produced as a prototype and the measurement’s results are compared with theoretical results. In conclusion, the values of deviation between theoretical and experimental results are discussed.
Simulation-based comparison of some gmti techniques
Baktır, Can; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2009)
With the developing radar technology, radars have been started to be used in the airborne platforms due to the need of fast, accurate and reliable information about the enemies. The most important and tactically needed information is the movements in an observation area. The detection of a ground moving target buried in a dense clutter environment from a moving air platform is a very challenging problem even today. The geometry of the operation, the course of the flight and structure of the clutter are the ...
Antenna patterns for detecting slowly moving targets in two channel gmti processing
Yıldırım, Gökhan; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2010)
Ground Moving Target Indicator (GMTI) is a well-known and widely used signal processing method in airborne and spaceborne radars. In airborne radar and GMTI literature, many radar designs and signal processing techniques have been developed to increase the detection and estimation performance under heavy interference conditions. The motion of the aircraft on which the radar is mounted, high altitudes and ranges, targets with low radar cross sections and slowly moving targets complicates the problem of local...
Target detection by the ambiguity function technique and the conventional fourier transform technique in frequency coded continuous wave radars
Akangöl, Mehmet; Sayan, Gönül; Department of Electrical and Electronics Engineering (2005)
Continuous Wave (CW) radars are preferred for their low probability of intercept by the other receivers. Frequency modulation techniques, the linear frequency modulation (LFM) technique in particular, are commonly used in CW radars to resolve the range and the radial velocity of the detected targets. The conventional method for target detection in a linear FMCW radar makes use of a mixer followed by a low-pass filter whose output is Fourier transformed to get the range and velocity information. In this thes...
Comparison and evaluation of three dimensional passive source localization techniques
Batuman, Emrah; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2010)
Passive source localization is the estimation of the positions of the sources or emitters given the sensor data. In this thesis, some of the well known methods for passive source localization are investigated and compared in a stationary emitter sensor framework. These algorithms are discussed in detail in two and three dimensions for both single and multiple target cases. Passive source localization methods can be divided into two groups as two-step algorithms and single-step algorithms. Angle-of-Arrival (...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Eryiğit, “Interference suppression by using space-time adaptive processing for airborne radar,” M.S. - Master of Science, Middle East Technical University, 2008.