Simulation-based comparison of some gmti techniques

Baktır, Can
With the developing radar technology, radars have been started to be used in the airborne platforms due to the need of fast, accurate and reliable information about the enemies. The most important and tactically needed information is the movements in an observation area. The detection of a ground moving target buried in a dense clutter environment from a moving air platform is a very challenging problem even today. The geometry of the operation, the course of the flight and structure of the clutter are the most effective parameters of this problem. There are some “Ground Moving Target Indication” (GMTI) techniques that have been studied for the last twenty years to overcome this problem. In this thesis, the simulation of some of these techniques in a realistic environment and the comparison of their performances are discussed. In this work, a GMTI simulator is developed to generate the environment containing the clutter and the noise signals, to locate and simulate the targets in this environment and to apply the GMTI techniques on the raw data generated by the simulator. The generation of the clutter signals including the internal clutter motion (ICM) for different types of clutter distributions is one of the most important parts of this thesis. The GMTI techniques being investigated throughout this thesis are “Displaced Phase Center Antenna” (DPCA), “Along-Track Interferometry” (ATI), “Adaptive DPCA”, “Pre-Doppler Sigma-Delta STAP” and “Post-Doppler Sigma-Delta STAP” techniques. These techniques are compared according to their clutter suppression and target detection performances under different environmental conditions.


Interference suppression by using space-time adaptive processing for airborne radar
Eryiğit, Özgür; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2008)
Space-Time Adaptive Processing (STAP) is an effective method in Ground Moving Target Indicator (GMTI) operation of airborne radars. Clutter suppression is the key to successful MTI operation. Airborne radars are different than the ground based ones in regard to clutter due to the displacement of the platform during operation. When STAP methods are to be investigated, one needs to have accurate signal models while evaluating performance. In this thesis, a comprehensive received signal model is developed firs...
Modeling, stability analysis and control system design of a small-sized tiltrotor uav
Çakıcı, Ferit; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2009)
Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircrafts that can carry cameras, sensors, communications equipment or other payloads. Tiltrotor UAVs provide a unique platform that fulfills the needs for ever-changing mission requirements by combining the desired features; hovering like a helicopter and reaching high forward speeds like an airplane. In this work, the conceptual design and aerodynamical model of a realizable small-sized Tiltrotor UAV is constructed, the linearized state-...
Design of an FM-CW radar altimeter
Yetkil, Yaşar Barış; Demir, Şimşek; Department of Electrical and Electronics Engineering (2005)
Frequency modulated continuous wave (FM-CW) radar altimeters are used in civil and military applications. Proximity fuses, automatic cruise control systems of cars, radar altimeter of planes are examples to these applications. The goal of this thesis is to present a method for altitude determination using an FM-CW radar. For this purpose principles of radars and FM-CW systems are studied and related subjects are inspected. After this inspection, algorithms for altitude determination are evaluated. Consequen...
Investigations on frequency beam scanning microstrip (bsms) antenna structures
Dündar, Burhan; Birand, Mehmet Tuncay; Department of Electrical and Electronics Engineering (2009)
Beam scanning Microstrip (BSMS) antenna is designed to work at center frequency of 10 GHz for using in the scanning applications of 9 GHz to 11 GHz band. The design parameters are defined and by using an Electromagnetic Simulation software program, the parameters are optimized. A Beam Scanning Microstrip Antenna is produced as a prototype and the measurement’s results are compared with theoretical results. In conclusion, the values of deviation between theoretical and experimental results are discussed.
Detection of airport runways in optical satellite images
Zöngür, Uğur; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2009)
Advances in hardware and pattern recognition techniques, along with the widespread utilization of remote sensing satellites, have urged the development of automatic target detection systems. Automatic detection of airports is particularly essential, due to the strategic importance of these targets. In this thesis, a detection method is proposed for airport runways, which is the most distinguishing element of an airport. This method, which operates on large optical satellite images, is composed of a segmenta...
Citation Formats
C. Baktır, “Simulation-based comparison of some gmti techniques,” M.S. - Master of Science, Middle East Technical University, 2009.