Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design of fixturing system for forging dies
Download
index.pdf
Date
2008
Author
Cavbozar, Özgür
Metadata
Show full item record
Item Usage Stats
323
views
106
downloads
Cite This
In forging industry, the die setup starts with unloading the previous die set and ends with approval of the first part produced. During conventional die setup, forging press is kept idle. The aim of this study is to perform die changing applications of the 1000 ton forging press of Aksan Steel Forging Company in more systematic way to reduce the idle time. The applicability of Single Minute Exchange of Dies (SMED) System and quick die locating methods have been studied. SMED classifies the setup operations as internal and external setup operations. During the internal setup operations the press is kept idle. Therefore it has been tried to reduce the internal setup time. In this study, a new modular die system has been developed. The die system to be used for the forging press with 1000 ton capacity in Aksan Steel Forging Company has been redesigned regarding the dimensional limitations, requirements, SMED System and quick die locating methods. The modules of proposed die system and the dies for a particular forging part have been produced. Tests, observations and time studies have been carried out. The time spent for alignment of the upper and lower dies on the press have been eliminated in the proposed system. The solutions have been proposed for the frequently encountered problems of setup operations of the company and these have been applied in the system. In order to eliminate operator mistakes, marking applications have also been introduced and the application of die cavity revision has been renewed. During the time studies for the case study, it has been seen that the internal setup time of the forging press with 1000 ton capacity has been reduced from 220 minutes to 141 minutes which corresponds to a reduction of 36 %.
Subject Keywords
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12610271/index.pdf
https://hdl.handle.net/11511/18298
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Analysis of roll-forging process
Karacaovalı, Hakan; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2005)
Roll-forging is a metal forming process and mainly used for preform forging of long parts prior to press or hammer forging in the industry. Variable cross sections through the length of billet can be obtained by roll-forging to acquire an adequate distribution of material to the next forging stages. In the design of process and dies used in roll-forging, there are some empirical techniques in literature. However these techniques only provide approximate reduction ratio and elongation during the process and ...
Analysis of warm forging process
Aktakka, Gülgün; Darendeliler, Haluk; Department of Mechanical Engineering (2006)
Forging is a metal forming process commonly used in industry. Forging process is strongly affected by the process temperature. In hot forging process, a wide range of materials can be used and even complex geometries can be formed. However in cold forging, only low carbon steels as ferrous material with simple geometries can be forged and high capacity forging machinery is required. Warm forging compromise the advantages and disadvantages of hot and cold forging processes. In warm forging process, a product...
Experimental and numerical analysis of compression on a forging press
Biçer, Gökhan; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2010)
Forging is a metal forming process which involves non-linear deformations. Finite element and finite volume software programs are commonly used to simulate the process. In these simulations, material properties are required. However, stress-strain relations of the materials at some elevated temperatures are not available in the material libraries of the related software programs. In this study, the stress-strain curves have been obtained by applying the Cook and Larke Simple Compression Test to AISI 1045 st...
Analysis and modeling of plastic wrinkling in deep drawing
Yalçın, Serhat; Oral, Süha; Kaftanoğlu, Bilgin; Department of Mechanical Engineering (2010)
Deep drawing operations are crucial for metal forming operations and manufacturing. Obtaining a defect free final product with the desired mechanical properties is very important for fulfilling the customer expectations and market competitions. Wrinkling is one of the fatal and most frequent defects that must be prevented. This study focuses on understanding the phenomenon of wrinkling and probable precautions that can be applied. In this study, dynamic – explicit commercial finite element code is used to s...
Analysis of tube upsetting
Tüzün, Aydın; Darendeliler, Haluk; Department of Mechanical Engineering (2004)
Producing axi-symmetrical parts with holes from tubular stock by tube upsetting is a frequently used technique in industry. There are basically four types of tube upsetting process; external, internal, simultaneous internal and external upsetting, and expanding of tube. In general, tubular parts require more than one upsetting stage. In industry, generally trial-error methods, which require lots of time and effort depending on experience, are used for the design of stages. Wrong design causes failures durin...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Cavbozar, “Design of fixturing system for forging dies,” M.S. - Master of Science, Middle East Technical University, 2008.