Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Synthesis and characterization of lithium tetraborate doped with metals
Download
index.pdf
Date
2009
Author
Pekpak, Esin
Metadata
Show full item record
Item Usage Stats
324
views
160
downloads
Cite This
Lithium tetraborate (Li2B4O7) has aroused interest of scientists since 1960s by the courtesy of the thermoluminescence (TL) property it possesses. Over and above, it found widespread use in surface acoustic wave apparatuses, in sensor sector and in laser technology due to its non linear optical characteristics. For the uses in thermoluminescence dosimetry lithium tetraborate is activated by addition of a variety of metals as dopants. This study comprises the synthesis of lithium tetraborate by two methods (high temperature solid state synthesis and water/solution assisted synthesis) as well as doping and characterization of the material. Lithium tetraborate is readily commercially available in TL dosimetry; hence, the main aim is to specify practical production conditions to pioneer domestic production. In high temperature synthesis, the initial heating was performed at 400oC for 3 hours. Then the samples were heated at 750oC for two hours, intermittently mixed to enhance diffusion and exposed to the same temperature for another two hours. In water/solution assisted synthesis, stoichiometric quantities of reactants were mixed in water by heating and agitating in order to achieve homogenous mixing and good dispersion of the material. The remnant of water was removed from the system by 3 hours initial heating at 150oC. The synthesis stage is followed by doping step where the metals Cu, Ag and In in different proportions were doped in lithium tetraborate by solid state and solution assisted synthesis techniques. Powder X-ray diffraction method was employed for the characterization of the material. The thermal properties of doped and un-doped materials were studied by DTA (Differential Thermal Analyses). Besides, FT-IR (Fourier Transform Infra red) spectrometry analyses were performed in order to detect differences in the bond structure caused by doping The XRD patterns obtained showed that lithium tetraborate production was successful by both high temperature solid state synthesis and solution assisted synthesis Moreover, it was inferred from the XRD results that addition of dopants did not have a sound effect on the crystal structure. Furthermore, the DTA results displayed that addition of different dopants to the structure of lithium tetraborate did not cause any noticeable difference. The extensive TL measurements showed that the TL response of the material produced is affected by production and doping methods.
Subject Keywords
Mining engineering.
,
Lithium Tetraborate.
URI
http://etd.lib.metu.edu.tr/upload/2/12610416/index.pdf
https://hdl.handle.net/11511/18447
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Synthesis of lithium borides by mechanochemical process
Önder, Onur; Önder, Onur; Department of Metallurgical and Materials Engineering (2009)
The aim of this study was to investigate synthesis of lithium borides by mechanochemical synthesis from oxides. Lithium borides have promising properties in the area of high energy additives and hydrogen storage. Lithium oxide (Li2O), boron oxide (B2O3) and Mg were used to synthesize lithium borides. Experiments were conducted in a planetary ball mill under argon atmosphere. Analyses of the products were done by X-ray diffraction and scanning electron microscopy. Trilithium tetradecaboride (Li3B14) peaks we...
The effect of synthesis and doping procedures on thermoluminescent response of lithium tetraborate
Pekpak, E.; Yılmaz, Ayşen; ÖZBAYOĞLU, GÜLHAN (2011-02-03)
Lithium tetraborate has been a scientific focus since 1960s by the courtesy of the thermoluminescence property it possesses. Moreover, it is utilized in surface acoustic wave apparatuses, in sensor sector and in laser technology owing to its non-linear optical characteristics. For the uses in thermoluminescence dosimetry lithium tetraborate is activated by addition of a variety of metals as dopants.
Synthesis and thermoluminescence properties of rare earth oxides (Y, Ce-Lu) doped lithium triborate
Yılmaz, Ayşen; Yılmaz, Ayşen (2011-06-01)
Lithium triborate (LiB(3)O(5)) was synthesized by high temperature solid-state reaction method, and then rare earth oxides were doped into LiB(3)O(5) to enhance its thermoluminescent (TL) properties. The identification and characteristics of the obtained compounds were determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) analyses, differential thermal analyses (DTA) and scanning electron microscopy (SEM). The glow curves were obtained using a thermoluminescent (TL) reader. The results re...
Synthesis, characterization and investigation of thermoluinescence properties of strontium pyrophosphate doped with metals
İlkay, Levent Sait; Özbayoğlu, Gülhan; Department of Mining Engineering (2009)
Strontium pyrophosphate is a promising phosphate that is used widely in the industry as a result of its luminescent, fluorescent, dielectric, semi-conductor, catalyst, magnetic and ion exchange properties. Thermoluminescent dosimetry (TLD) is one of such areas. Recent researches in METU on thermoluminescence property of strontium pyrophosphate showed that strontium pyrophosphate could give enough intensity for radiation dosimetry when doped with oxides of some rare-earth elements. In this study strontium py...
Synthesis of rare-earth doped lithium triborate
Ardıçoğlu, Burcu; Özbayoğlu, Gülhan; Department of Mining Engineering (2005)
Research in the field of non-linear optical (NLO) devices lead to an increasing interest in new borate compounds, capable of expanding the frequency range provided by common laser sources. Lithium triborate (LBO) is a newly developed ideal non-linear optical crystal used in laser weapon, welder, radar, tracker, surgery, communication, etc. Borates containing rare-earth elements are of great interest since they are found to be superior in non-linear optical applications. In this study, synthesis and identifi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Pekpak, “Synthesis and characterization of lithium tetraborate doped with metals,” M.S. - Master of Science, Middle East Technical University, 2009.