Parametric study and design of vivaldi antennas and arrays

Download
2009
Erdoğan, Yakup
In this thesis, parametric study and design of Vivaldi antennas and arrays are studied. The parameters of single element antennas and arrays are investigated regarding their effects on the design. The return loss responses and radiation patterns are considered in the parametric study. The results of simulations realized using Ansoft HFSS, a high frequency electromagnetic field simulation program, are shown and discussed. Two different Vivaldi antennas operating in 8.5-10.5 GHz frequency band with return loss responses better than 15 dB are designed based on the results of parametric study. Stripline to slotline transition is used in the feeding section of both antennas. In the same manner, two different 8-element uniform linear arrays operating in 8.5-10.5 GHz with half power beam widths smaller than 12˚ and side lobe levels smaller than 13 dB are designed. Binomial and Dolph-Chebyshev feeding techniques are also investigated in order to improve half power beamwidths and side lobe levels of the designed arrays. The designed single element Vivaldi antennas and a linear array of Vivaldi antennas are fabricated. The return loss response and radiation patterns of the fabricated antennas and the array are measured and compared with the simulation results.

Suggestions

Joint frequency offset and channel estimation
Avan, Muhammet; Candan, Çağatay; Department of Electrical and Electronics Engineering (2008)
In this thesis study, joint frequency offset and channel estimation methods for single-input single-output (SISO) systems are examined. The performance of maximum likelihood estimate of the parameters are studied for different training sequences. Conventionally training sequences are designed solely for the channel estimation purpose. We present a numerical comparison of different training sequences for the joint estimation problem. The performance comparisons are made in terms of mean square estimation err...
Multipath Characteristics of Frequency Diverse Arrays Over a Ground Plane
Cetintepe, Cagri; Demir, Şimşek (Institute of Electrical and Electronics Engineers (IEEE), 2014-07-01)
This paper presents a theoretical framework for an analytical investigation of multipath characteristics of frequency diverse arrays (FDAs), a task which is attempted for the first time in the open literature. In particular, transmitted field expressions are formulated for an FDA over a perfectly conducting ground plane first in a general analytical form, and these expressions are later simplified under reasonable assumptions. Developed formulation is then applied to a uniform, linear, continuous-wave opera...
Direction finding for coherent, cyclostationary signals via a uniform circular array
Atalay Çetinkaya, Burcu; Koç, Arzu; Department of Electrical and Electronics Engineering (2009)
In this thesis work, Cyclic Root MUSIC method is integrated with spatial smoothing and interpolation techniques to estimate the direction of arrivals of coherent,cyclostationary signals received via a Uniform Circular Array (UCA). Cyclic Root MUSIC and Conventional Root MUSIC algorithms are compared for various signal scenarios by computer simulations. A cyclostationary process is a random process with probabilistic parameters, such as the autocorrelation function, that vary periodically with time. Most of ...
Tunable frequency microstrip antennas by rf-mems technology
Erdil, Emre; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2005)
This thesis presents the design, fabrication, and measurement of tunable frequency microstrip antennas using RF MEMS (Microelectromechanical Systems) technology. The integration of RF MEMS components with radiators enable to implement tunable systems due to the adjustable characteristics of RF MEMS components. In the frame of this thesis, different types of structures have been investigated and designed. The first structure consists of a microstrip patch antenna which is loaded with a microstrip stub whose ...
Parameter extraction and image enhancement for catadioptric omnidirectional cameras
Baştanlar, Yalın; Çetin, Yasemin; Department of Information Systems (2005)
In this thesis, catadioptric omnidirectional imaging systems are analyzed in detail. Omnidirectional image (ODI) formation characteristics of different camera-mirror configurations are examined and geometrical relations for panoramic and perspective image generation with common mirror types are summarized. A method is developed to determine the unknown parameters of a hyperboloidal-mirrored system using the world coordinates of a set of points and their corresponding image points on the ODI. A linear relati...
Citation Formats
Y. Erdoğan, “Parametric study and design of vivaldi antennas and arrays,” M.S. - Master of Science, Middle East Technical University, 2009.