Effect of strain history on simulation of crashworthiness of a vehicle

Download
2009
Doğan, Uluğ Çağrı
In this thesis the sheet metal forming effects such as plastic strain and thickness changes in the crash have been investigated by numerical analysis. The sheet metal forming histories of the components of the load path that absorbs the highest energy during a frontal crash have been considered. To find out the particular load path, the frontal crash analysis of Ford F250 Pickup has been performed at 56 kph into a rigid wall with finite element analysis without considering the forming history. The sheet metal forming simulations have been realized for each structural component building up the particular load path. After forming histories have been acquired, plastic strain and thickness distributions have been transferred to the frontal crash analysis. The frontal crash analysis of Ford F250 Pickup has been repeated by including these to introduce the effect of forming on crash response of the vehicle. The results of the simulations with and without forming effect have been compared with the physical crash test results to evaluate the sheet metal forming effect on the overall crash response. The results showed that with forming history the crash response of the vehicle and deformations of the particular components have been changed and the maximum deceleration pulse transferred to the passenger compartment has decreased. It has seen that a good agreement with physical test results has been achieved.

Suggestions

Effect of surface roughness in microchannels on heat transfer
Turgay, Metin Bilgehan; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2008)
In this study, effect of surface roughness on convective heat transfer and fluid flow in two dimensional parallel plate microchannels is analyzed by numerically. For this purpose, single-phase, developing, laminar fluid flow at steady state and in the slip flow regime is considered. The continuity, momentum, and energy equations for Newtonian fluids are solved numerically for constant wall temperature boundary condition. Slip velocity and temperature jump at wall boundaries are imposed to observe the rarefa...
Design and analysis of filament wound composite tubes
Balya, Bora; Parnas, Kemal Levend; Department of Mechanical Engineering (2004)
This thesis is for the investigation of the design and analysis processes of filament wound composite tubes under combined loading. The problem is studied by using a computational tool based on the Finite Element Method (FEM). Filament wound tubes are modeled as multi layered orthotropic tubes. Several analyses are performed on layered orthotropic tubes by using FEM. Results of the FEM are examined in order to investigate characteristics of filament wound tubes under different combined loading conditions. W...
Numerical and experimental investigation of forced filmwise condensation over bundle of tubes in the presence of noncondensable gases
Ramadan, Abdul-Ghani M; Yamalı, Cemil; Department of Mechanical Engineering (2006)
The problem of the forced film condensation heat transfer of pure steam and steam-air mixture flowing downward a tier of horizontal cylinders is investigated numerically and experimentally. Liquid and vapor-air mixture boundary layers were solved by an implicit finite difference scheme. The effects of the free stream non-condensable gas (air) concentration, free stream velocity (Reynolds number), cylinder diameter, temperature difference and angle of inclination on the condensation heat transfer are analyze...
Transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites
Şen, Özge; Turhan, Doğan; Department of Engineering Sciences (2005)
In this study, transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites is investigated. Thermal effects, in addition to mechanical effects, are taken into consideration. A generalized thermoelasticity theory which incorporates the temperature rate among the constitutive variables and is referred to as temperature-rate dependent thermoelasticity theory is employed. This theory predicts finite heat propagation speeds. The body considered in this thesis consists o...
A finite elements based approach for fracture analysis of welded joints in construction machinery
Karagöz, Taner; Dağ, Serkan; Department of Mechanical Engineering (2007)
This study aims to develop a computer program to perform finite elements based fracture mechanics analyses of three dimensional surface cracks in T-welded joints of construction machinery. The geometrical complexity of the finite elements models and the requirement of large computer resources for the analyses necessitate the use of shell elements for general stress distribution optimization. A sub-modeling technique, together with a shell to solid conversion method, enables the user to model a local region ...
Citation Formats
U. Ç. Doğan, “Effect of strain history on simulation of crashworthiness of a vehicle,” M.S. - Master of Science, Middle East Technical University, 2009.