Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Effect of foundation rigidity on contact stress distribution in soils with variable strength / deformation properties
Download
index.pdf
Date
2010
Author
Çekinmez, Zeynep
Metadata
Show full item record
Item Usage Stats
3
views
6
downloads
In this study, a typical mat foundation and structural loading pattern is considered. Three dimensional finite element analyses, PLAXIS 3D, is performed to determine the soil / foundation contact stress distribution, settlement distribution, distribution of modulus of subgrade reaction as a function of column spacing, stiffness of the soil and thickness of the foundation. A parametric study is performed to demonstrate the dependence of those distributions on various parameters. Moreover, a relationship between size of the foundation, deformation modulus of foundation soil and modulus of subgrade reaction is proposed. Depending on the variations in those parameters, obtained shear force and bending moment distributions are compared. Consistency between the resulting shear forces and bending moments of a typical foundation, modeled in two different three dimensional finite element programs, PLAXIS 3D and SAP 2000, is discussed. It is found that the variation in the aforementioned parameters cause different influences on contact stress distribution, settlement distribution, distribution of modulus of subgrade reaction. The importance of those variations in beforementioned parameters, under different situations is discussed. A relationship between modulus of subgrade reaction and deformation modulus of foundation soil is proposed.
Subject Keywords
Civil engineering.
URI
http://etd.lib.metu.edu.tr/upload/3/12611478/index.pdf
https://hdl.handle.net/11511/19294
Collections
Graduate School of Natural and Applied Sciences, Thesis