Effect of foundation rigidity on contact stress distribution in soils with variable strength / deformation properties

Download
2010
Çekinmez, Zeynep
In this study, a typical mat foundation and structural loading pattern is considered. Three dimensional finite element analyses, PLAXIS 3D, is performed to determine the soil / foundation contact stress distribution, settlement distribution, distribution of modulus of subgrade reaction as a function of column spacing, stiffness of the soil and thickness of the foundation. A parametric study is performed to demonstrate the dependence of those distributions on various parameters. Moreover, a relationship between size of the foundation, deformation modulus of foundation soil and modulus of subgrade reaction is proposed. Depending on the variations in those parameters, obtained shear force and bending moment distributions are compared. Consistency between the resulting shear forces and bending moments of a typical foundation, modeled in two different three dimensional finite element programs, PLAXIS 3D and SAP 2000, is discussed. It is found that the variation in the aforementioned parameters cause different influences on contact stress distribution, settlement distribution, distribution of modulus of subgrade reaction. The importance of those variations in beforementioned parameters, under different situations is discussed. A relationship between modulus of subgrade reaction and deformation modulus of foundation soil is proposed.

Suggestions

Effect of shear walls on the behavior of reinforced concrete buildings under earthquake loading
Çömlekoğlu, Hakkı Gürhan; Burak Bakır, Burcu; Department of Civil Engineering (2009)
An analytical study was performed to evaluate the effect of shear wall ratio on the dynamic behavior of mid-rise reinforced concrete structures. The primary aim of this study is to examine the influence of shear wall area to floor area ratio on the dynamic performance of a building. Besides, the effect of shear wall configuration and area of existing columns on the seismic performance of the buildings were also investigated. For this purpose, twenty four mid-rise building models that have five and eight sto...
Effect of Foundation Soil Stiffness on the Seismic Performance of Integral Bridges
Dicleli, Murat (Informa UK Limited, 2011-05-01)
In this study, the effect of foundation soil stiffness on the seismic performance of integral bridges (IBs) is investigated. For this purpose, nonlinear structural models of a two-span TB with four different foundation soil stiffness types (loose, medium, medium-dense and dense sands) are built. In the nonlinear structural models, nonlinear soil structure interaction including free-field effects is considered. Then, the nonlinear time history analyses of the TB models are conducted using a set of ground mot...
An experimental study into bearing of rigid piled rafts under vertical loads
Türkmen, Haydar Kürşat; Ergun, Mehmet Ufuk; Department of Civil Engineering (2008)
In this study, the load bearing behavior of piled raft foundations is investigated performing laboratory and field tests. Piled raft foundation of a multi storey building was also instrumented and monitored in order to study the load sharing mechanism of piled raft foundations. A small reinforced concrete piled raft of 2.3 m square supported by four mini piles at the corners was loaded and contribution of the raft support up to 41 % of the total load was observed. The soil was stiff fissured Ankara clay wit...
An integrated seismic hazard framework for liquefaction triggering assessment of earthfill dams' foundation soils
Ünsal Oral, Sevinç; Çetin, Kemal Önder; Department of Civil Engineering (2009)
Within the confines of this study, seismic soil liquefaction triggering potential of a dam foundation is assessed within an integrated probabilistic seismic hazard assessment framework. More specifically, the scheme presented hereby directly integrates effective stress-based seismic soil liquefaction triggering assessment with seismic hazard analysis framework, supported by an illustrative case. The proposed methodology successively, i) processes the discrete stages of probabilistic seismic hazard workflow ...
Evaluation of steel building design methodologies: TS648,Eurocode 3 and LRFD
Zervent, Altan; Yılmaz, Çetin; Department of Civil Engineering (2009)
The aim of this study is designing steel structures with the same geometry, material and soil conditions but in the different countries, and comparing these designs in terms of material savings. According to three steel building codes, namely TS 648, LRFD, Eurocode 3, same structures with various stories (2, 4, 6, 8, and 10) are analyzed and designed. To calculate the design loads, Turkish Earthquake Code 2007 and Turkish Standard 498 (Design Load for Buildings) are utilized when TS 648 is applied. When LRF...
Citation Formats
Z. Çekinmez, “Effect of foundation rigidity on contact stress distribution in soils with variable strength / deformation properties,” M.S. - Master of Science, Middle East Technical University, 2010.