Conduction based compact thermal modeling for thermal analysis of electronic components

Ocak, Mustafa
Conduction based compact thermal modeling of DC/DC converters, which are electronic components commonly used in military applications, are investigated. Three carefully designed numerical case studies are carried out at component, board and system levels using ICEPAK software. Experiments are conducted to gather temperature data that can be used to study compact thermal models (CTMs) with different levels of simplification. In the first (component level) problem a series of conduction based CTMs are generated and used to study the thermal behavior of a Thin-Shrink Small Outline Package (TSSOP) type DC/DC converter under free convection conditions. In the second (board level) case study, CTM alternatives are produced and investigated for module type DC/DC converter components using a printed circuit board (PCB) of an electro-optic system. In the last case study, performance of the CTM alternatives generated for the first case are assessed at the system level using them on a PCB placed inside a realistic avionic box. v Detailed comparison of accuracy of simulations obtained using CTMs with various levels of simplification is made based on experimentally obtained temperature data. Effects of grid size and quality, choice of turbulence modeling and space discretization schemes on numerical solutions are discussed in detail. It is seen that simulations provide results that are in agreement with measurements when appropriate CTMs are used. It is also showed that remarkable reductions in modeling and simulation times can be achieved by the use of CTMs, especially in system level analysis.
Citation Formats
M. Ocak, “Conduction based compact thermal modeling for thermal analysis of electronic components,” M.S. - Master of Science, 2010.