Hide/Show Apps

Optomechanical analysis and experimental validation of bonding based prism and mirror mounts in a laser system

Ünal, Uğur
In this thesis, different optomechanical design and adhesive configurations for mounting mirrors and prisms used in a laser system are investigated. Maintaining stability and strength of optical components of a laser device is difficult especially if the system is to be used in military environment. In order to determine the strength of prism mounts to high acceleration levels, mathematical correlations derived by Yoder are used. By use of these mathematical correlations, safety factor of different prism mounts and adhesive configurations are calculated for an acceleration level of 40g. So as to decide most stable mirror mount and adhesive configuration, several experiments are conducted. For the experiments, 5 different optomechanical mounts are designed. Then, 25 mirrors are bonded to the designed mounts with 5 different adhesives. These experiments are done to simulate harsh military environmental conditions such as thermal shock, mechanical vibration and mechanical shock. In the experiments, angular movement of mirrors due to adhesive cure, thermal shock, mechanical vibration and mechanical shock are monitored. Thermal shock is applied between -40ºC and 70ºC with a temperature change of 22ºC/min. On the v other hand, mechanical vibration of 14 grms and mechanical shock of 40g for 6 ms is applied in the experiments. Shortly, this study is done for determination of the most stable mirror and prism mount design and adhesive combination of a laser system subjected to extremely harsh environments.