Synthesis and characterization of high temperature resistant bismaleimide based resins and their composites

Download
2010
Günalp, Süreyya Esin
Bismaleimide resins are important in aerospace applications as matrix component of composite materials due to their high thermal and mechanical properties. 4,4’-bismaleimidodiphenylmethane (BMI) which is the most widely used bismaleimide, was synthesized starting from maleic anhydride and 4,4’-diaminodiphenylmethane (MDA). N,N’-diallylaminodiphenyl methane (ADM), N,N’-diallylaminodiphenyl sulfone (ADS) and N,N’-diallyl p-phenyl diamine (PDA) were synthesized by allylating primary aromatic diamines. Nine different prepolymers with 1:1, 1.5:1 and 2:1 molar ratios of BMI/diallyl compound were prepared and cured. The effect of increase in BMI ratio on thermal properties of the resin systems were investigated via Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analyzer (TGA). DSC results showed that the curing temperature of the resins increased due to the increase in BMI ratio in the resins. Thermal gravimetric analysis showed that incorporation of BMI monomer improved the thermal stability of the resins. BMI/ADM resin system showed better thermal stability compared to BMI/ADS and BMI/PDA resins. Processing characteristics of resins having 1:1 and 1.5:1 mole ratio of BMI/ADM were investigated by viscosity measurements and these resins were found to be suitable for composite production with Resin Transfer Molding (RTM). Composites were manufactured by RTM technique using two different mole ratios of BMI/ADM resins as matrix component. The effect of different matrix composition on thermal and mechanical properties of the composites were investigated. The concept of this thesis work was arised from the requirements of some projects carried out in Tübitak-SAGE. Keywords: Bismaleimide resins, composite, thermal properties, resin transfer molding.

Suggestions

Studies on the modification of interphase/interfaces by use of plasma in certain polymer composite systems
Akovali, G; Dilsiz, N (Wiley, 1996-04-01)
Calcium carbonate and carbon fiber surfaces were modified by use of a series of plasma polymers at different selected plasma conditions, and the effect of surface modification, mainly on the mechanical properties of composite systems prepared, was investigated. The matrices for the composite systems employed were polypropylene and epoxy, for the chalk and C fiber, respectively. Mechanical and thermal studies and scanning electron microscopy (SEM) pictures revealed that inclusion surfaces, being independent ...
Preparation and Comparison of Two Electrodes for Supercapacitors: Pani/CNT/Ni and Pani/Alizarin-Treated Nickel
Koysuren, Ozcan; Du, Chunsheng; Pan, Ning; Bayram, Göknur (Wiley, 2009-07-15)
Polyaniline in emeraldine form was synthesized in the presence of multiwalled carbon nanotubes (CNTs), and the electrochemical capacitance performance of thus formed composite as electrode material has been Studied. The polyaniline/carbon nanotubes (Pani/CNT) composite is found to result in a higher specific capacitance than that of either composite constituent, attributable to the double-layer capacitance behavior of the nanotubes in the Pani/CNT system. However, once assembled into a two-electrode cell, l...
Characterization studies on aging properties of acetyl ferrocene containing HTPB-based elastomers
Dilsiz, N; Unver, A (Wiley, 2006-08-15)
In composite solid propellants, low-molecular-weight species such as burning rate catalysts, plasticizer, etc. which migrate into liner and thermal insulation layers during curing and storage invariably result in poor mechanical and ballistic properties of the propellants. In the present study, the migration of the burning rate catalyst, acetyl ferrocene, was investigated spectrophotometrically (UV-visible) by evaluating the extent of hindrance to such migration after applying a barrier (liner) of various c...
Fabrication of SiO2-stacked diamond membranes and their characteristics for microelectromechanical applications
Bayram, Barış (Elsevier BV, 2011-04-01)
Diamond is a promising microelectromechanical systems (MEMS) material due to its high Young's Modulus and very large thermal conductivity. In this work, ultrananocrystalline diamond was stacked between silicon dioxide to form thermally-stable and robust membranes. These SiO2-stacked diamond layers were processed into MEMS-compatible membranes. For comparison, membranes composed of only SiO2 were fabricated as well. The structural characteristics of these membranes are compared and analyzed for membranes of ...
Characterization of serpentine filled polypropylene
Can, Semra; Tinçer, Teoman; Department of Polymer Science and Technology (2008)
In this study, the aim is to prepare polypropylene (PP)/serpentine composites and study their mechanical, thermal and morphological properties. Another objective is to explore whether it is possible to have PP/serpentine nanocomposites with melt intercalation method by using the advantage of the layer silicate structure of serpentine. The most widely used fillers in PP are talc and mica which belong to the phyllosilicates group of silicate minerals. So far, there has been almost no study employing serpentin...
Citation Formats
S. E. Günalp, “Synthesis and characterization of high temperature resistant bismaleimide based resins and their composites,” M.S. - Master of Science, Middle East Technical University, 2010.