Emergence of verb and object concepts through learning affordances

Download
2010
Dağ, Nilgün
Researchers are still far from thoroughly understanding and building accurate computational models of the mechanisms in human mind that give rise to cognitive processes such as emergence of concepts and language acquisition. As a new attempt to give an insight into this issue, in this thesis, we are concerned about developing a computational model that leads to the emergence of concepts. Speci cally, we investigate how a robot can acquire verb and object concepts through learning affordances, a notion first proposed by J. J. Gibson in 1986. Using the affordance formalization framework of Şahin et al. in 2007, a humanoid robot acquires concepts through interactions in an embodied environment. For the acquisition of verb concepts, we take an alternative approach to the literature, which generally links verbs to specific behaviors of the robot, by linking them to specific effects that different behaviors may generate. We show how our robot can learn effect prototypes, represented in terms of feature changes in the perception vector of the robot, through demonstrations made by a human supervisor. As for the object concepts, we use the affordance relations of objects to create object concepts based on their functional relevance. Additionally, we show that the extracted e ect prototypes corresponding to verb concepts can also be utilized to discover stable and variable properties of objects which can be associated to stable and variable affordances. Moreover, we show that the acquired concepts provide a suitable basis for communication with humans or other agents, for example to understand and imitate others' behaviors or for goal speci cation tasks. These capabilities are demonstrated in simple interaction games on the iCub humanoid robot platform.

Suggestions

Reinforcement learning using potential field for role assignment in a multi-robot two-team game
Fidan, Özgül; Erkmen, İsmet; Department of Electrical and Electronics Engineering (2004)
In this work, reinforcement learning algorithms are studied with the help of potential field methods, using robosoccer simulators as test beds. Reinforcement Learning (RL) is a framework for general problem solving where an agent can learn through experience. The soccer game is selected as the problem domain a way of experimenting multi-agent team behaviors because of its popularity and complexity.
A temporal neural network model for constructing connectionist expert system knowledge bases
Alpaslan, Ferda Nur (Elsevier BV, 1996-04-01)
This paper introduces a temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications.
Learning to Navigate Endoscopic Capsule Robots
Turan, Mehmet; Almalioglu, Yasin; Gilbert, Hunter B.; Mahmood, Faisal; Durr, Nicholas J.; Araujo, Helder; Sari, Alp Eren; Ajay, Anurag; Sitti, Metin (Institute of Electrical and Electronics Engineers (IEEE), 2019-07-01)
Deep reinforcement learning (DRL) techniques have been successful in several domains, such as physical simulations, computer games, and simulated robotic tasks, yet the transfer of these successful learning concepts from simulations into the real world scenarios remains still a challenge. In this letter, a DRL approach is proposed to learn the continuous control of a magnetically actuated soft capsule endoscope (MASCE). Proposed controller approach can alleviate the need for tedious modeling of complex and ...
A fluid dynamics framework for control of mobile robot networks
Paç, Muhammed Raşid; Erkmen, Aydan Müşerref; Department of Electrical and Electronics Engineering (2007)
This thesis proposes a framework for controlling mobile robot networks based on a fluid dynamics paradigm. The approach is inspired by natural behaviors of fluids demonstrating desirable characteristics for collective robots. The underlying mathematical formalism is developed through establishing analogies between fluid bodies and multi-robot systems such that robots are modeled as fluid elements that constitute a fluid body. The governing equations of fluid dynamics are adapted to multi-robot systems and a...
Investigation of the effects of structural characteristics of object-oriented software on fault-proneness
Gölcük, Halit; Bilgen, Semih; Department of Electrical and Electronics Engineering (2014)
This study investigates the effects of structural characteristics of object-oriented software, which are observable at the model level of the software developed by means of Unified Modeling Language (UML), on software quality, assessing quality in terms of fault-proneness. In the scope of this thesis study, real-time embedded software components developed by Aselsan, a leading defense industry company in Turkey, were analyzed. The correlation between software metrics measured from the UML models of the soft...
Citation Formats
N. Dağ, “Emergence of verb and object concepts through learning affordances,” M.S. - Master of Science, Middle East Technical University, 2010.