A grid-based seismic hazard analysis application

Download
2010
Kocair, Çelebi
The results of seismic hazard analysis (SHA) play a crucial role in assessing seismic risks and mitigating seismic hazards. SHA calculations generally involve magnitude and distance distribution models, and ground motion prediction models as components. Many alternatives have been proposed for these component models. SHA calculations may be demanding in terms of processing power depending on the models and analysis parameters involved, and especially the size of the site for which the analysis is to be performed. In this thesis, we develop a grid-based SHA application which provides the necessary computational power and enables the investigation of the effects of applying different models. Our application not only includes various already implemented component models but also allows integration of newly developed ones.

Suggestions

Influence of seismic source and ground motion modeling on the probabilistic seismic hazard assessment of the city of Van after the 23 october 2011 mw7.2 earthquake
Şenyurt, Mehtap; Akkar, Sinan; Yılmaz, Mustafa Tolga; Department of Civil Engineering (2013)
Reliable assessment of seismic hazard is the most important step for seismic design and performance assessment of structural systems. However, the inherent uncertainty in earthquakes as well as modeling of ground motion may affect the hazard computed for a particular region. This study investigates the influence of seismic source and ground motion modeling on probabilistic seismic hazard assessment (PSHA). The study considers the seismicity around the city of Van to achieve its objective as this city was hi...
Prediction of potential seismic damage using classification and regression trees: a case study on earthquake damage databases from Turkey
Yerlikaya-Ozkurt, Fatma; Askan Gündoğan, Ayşegül (Springer Science and Business Media LLC, 2020-09-01)
Seismic damage estimation is an important key ingredient of seismic loss modeling, risk mitigation and disaster management. It is a problem involving inherent uncertainties and complexities. Thus, it is important to employ robust approaches which will handle the problem accurately. In this study, classification and regression tree approach is applied on damage data sets collected from reinforced concrete frame buildings after major previous earthquakes in Turkey. Four damage states ranging from None to Seve...
Assessment of seismic hazard in the Erzincan (Turkey) region: construction of local velocity models and evaluation of potential ground motions
Askan Gündoğan, Ayşegül; Karim Zadeh Naghshineh, Shaghayegh; Sisman, Fatma Nurten; Erkmen, Cenk (2015-01-01)
The fundamental step in estimation of seismic damage and losses in urban areas is identification of regional potential seismic hazard. The accuracy of seismic analyses depends on the reliability of the local input parameters used in the corresponding hazard and loss models. This paper presents detailed seismic hazard analyses for an earthquake-prone region using locally derived source and site parameters. Main components of this study are construction of local seismic velocity models, probabilistic and dete...
An evaluation of seismic hazard and potential damage in Gaziantep, Turkey using site specific models for sources, velocity structure and building stock
Karimzadeh, Shaghayegh; Arslan Kelam, Arzu; Yousefibavil, Karim; Akgün, Haluk; Askan Gündoğan, Ayşegül; KOÇKAR, MUSTAFA KEREM; Erberik, Murat Altuğ; Ciftci, Hacer; Pekcan, Onur (2022-03-01)
Assessment of potential seismic risk and losses in urban environments is necessary for several purposes ranging from risk mitigation to city and regional planning. It is well known that loss estimation should be performed within an interdisciplinary setting involving earth sciences and engineering. Field experience from recent events worldwide shows that the spatial variability of seismic damage is due to the combined effects of earthquake source properties, local site conditions and structural characterist...
An Interdisciplinary Approach for Regional Seismic Damage Estimation
Askan Gündoğan, Ayşegül; Erberik, Murat Altuğ; Karim Zadeh Naghshineh, Shaghayegh; Yakut, Ahmet (2017-01-09)
In order to mitigate seismic risk in urban regions, the first task is to identify potential seismic losses in future earthquakes. Seismic loss estimation is an interdisciplinary framework including a wide range of contributions from geophysical and earthquake engineers, physical and economic planners to insurance companies. In this study, a moderate size city in Turkey, namely Erzincan, is modeled completely from geophysical attributes to the built environment. Erzincan city is on the eastern part of the No...
Citation Formats
Ç. Kocair, “A grid-based seismic hazard analysis application,” M.S. - Master of Science, Middle East Technical University, 2010.