Development and microfabrication of capacitive micromachinedultrasound transducers with diamond membranes

Download
2011
Cezar, Mehmet
This thesis presents the development and microfabrication of capacitive micromachined ultrasonic transducers (CMUT) with diamond membranes for the first time in the literature. Although silicon and silicon nitride (Si3N4) membranes have been generally used as the membrane material in CMUTs. These membrane materials have moderate properties that can cause damage during the operation of CMUTs. In this thesis, a new material for the membrane is introduced for CMUTs. Diamond has exceptional potential in the area of micro-nano technologies due to unrivalled stiffness and hardness, excellent tribological performance, highly tailorable and stable surface chemistry, high thermal conductivity and low thermal expansion, high acoustic velocity of propagating waves, and biocompatibility. Based on these excellent material properties, diamond is employed in the new generation CMUT structures for more robust and reliable operations. The microfabrication process of CMUT has been generally performed with either sacrificial release process or wafer bonding technique. High yield and low cost features of wafer bonding process makes it preferable for CMUT devices. In this thesis, plasma-activated direct wafer bonding process was developed for the microfabrication of 16-element 1-D CMUT arrays with diamond membranes. They were designed to operate at different resonance frequencies in the range of 1 MHz and 10 MHz with different cell diameters (120, 88, 72, 54, 44 μm) and element spacing (250, 375 μm). 1-D CMUT array devices can be used for focusing ultrasound applications. The electronic circuit for 1-D CMUT devices with diamond membranes was designed and implemented on PCB for the ultrasound focusing experiment. This electronic circuit generates continuous or burst AC signals of ± 15 V with different and adjustable phase shifting options at 3 MHz frequency. 16 elements of 72 μm 1-D CMUT array were successfully tested. Fully functional 7 elements of 1-D CMUT array are focused at an axial distance of 5.81 mm on the normal to the CMUT center plane. The CMUT array was excited using 10 Vp−p with 10 cycles sinusoidal signals at 3 MHz. The microfabrication process and focusing ultrasound of 1-D CMUT devices with diamond membranes are done successfully in this thesis.

Suggestions

Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
Design and Development of 1-D CMUT Array with Diamond Membrane
Karacaer, Berkay; Bayram, Barış; Department of Electrical and Electronics Engineering (2022-1-25)
This thesis presents a new microfabrication method of 1-D capacitive micromachined ultrasonic transducer (CMUT) array featuring diamond membrane. This microfabrication method for diamond membrane CMUT array is based on the sacrificial etching of polysilicon in XeF2 plasma. The stiction problem of membranes due to capillary force in wet etching processes is avoided since the XeF2 is a gaseous chemical in plasma form that etches silicon and its derivatives with very high selectivity over silicon dioxide and d...
Design and implementation of microwave lumped components and system integration using MEMS technology
Temoçin, Engin Ufuk; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the design and fabrication of coplanar waveguide to microstrip transitions and planar spiral inductors, and the design of metal-insulator-metal capacitors, a planar band-pass, and a low-pass filter structures as an application for the inductors and capacitors using the RF MEMS technology. This thesis also includes a packaging method for RF MEMS devices with the use of “benzocyclobutene” as bonding material. The transition structures are formed by four different methods between coplanar ...
Development of mems technology based microwave and millimeter-wave components
Çetintepe, Çağrı; Demir, Şimşek; Department of Electrical and Electronics Engineering (2010)
This thesis presents development of microwave lumped elements for a specific surface-micromachining based technology, a self-contained mechanical characterization of fixed-fixed type beams and realization of a shunt, capacitive-contact RF MEMS switch for millimeter-wave applications. Interdigital capacitor, planar spiral inductor and microstrip patch lumped elements developed in this thesis are tailored for a surface-micromachining technology incorporating a single metallization layer, which allows an easy ...
Design of an electromagnetic classifier for spherical targets
Ayar, Mehmet; Sayan, Gönül; Department of Electrical and Electronics Engineering (2005)
This thesis applies an electromagnetic feature extraction technique to design electromagnetic target classifiers for conductors, dielectrics and dielectric coated conductors using their natural resonance related late-time scattered responses. Classifier databases contain scattered data at only a few aspects for each candidate target. The targets are dielectric spheres of varying sizes and refractive indices, perfectly conducting spheres varying sizes and dielectric coated conducting spheres of varying refra...
Citation Formats
M. Cezar, “Development and microfabrication of capacitive micromachinedultrasound transducers with diamond membranes,” M.S. - Master of Science, Middle East Technical University, 2011.