Simulation and performance evaluation of a distributed real-time communication protocol for industrial embedded systems

Aybar, Güray
The Dynamic Distributed Dependable Real-Time Industrial communication Protocol (D3RIP) provides service guarantees for Real-Time traffic and integrates the dynamically changing requirements of automation applications in their operation to efficiently utilize the resources. The protocol dynamically allocates the network resources according to the respective system state. To this end, the protocol architecture consists of an Interface Layer that provides time-slotted operation and a Coordination Layer that assigns each time slot to a unique transmitter device based on a distributed computation. In this thesis, a software simulator for D3RIP is developed. Using the D3RIP Simulator, modifications in D3RIP can be easily examined without facing complexities in real implementations and extensive effort in terms of time and cost. The simulator simulates the Interface Layer, the Coordination Layer and additionally, the Shared Medium. Hence, using the simulator, the system-protocol couple can be easily analyzed, tested and further improvements on D3RIP can be achieved with the least amount of effort. The simulator implements the Timed Input Output Automata (TIOA) models of the D3RIP stack components using C++. The resulting code is compiled on GCC (Gnu Compiler Collection). The logs of the simulation runs and the real system with 2 devices connected via cross 100MbE cables are compared. In a 3ms time slot, the simulator and the system incidents differ about 135µs on the average, causing no asynchronousity in their instantaneous operational states. The D3RIP Simulator is useful in keeping track of any variable in the D3RIP system automaton at any instant up to 1µs resolution.