Influence of deformable geofoam bufers on the static and dynamic behaviors of cantilever retaining walls

Ertuğrul, Özgür Lütfi
Static and dynamic interaction mechanism of the retained soil-compressible geofoam buffer and yielding retaining structures requires further investigation. The present study, initiated on this motive, discusses the results of 1-g physical model tests and numerical analyses of cantilever retaining walls with and without deformable geofoam buffers between the wall and cohesionless granular backfill. 0.7m high walls with various wall thicknesses were utilized in the physical modeling. Dynamic tests were carried out by using a laminar container placed on a uni-axial shaking table. Influence of buffer thickness, geofoam type and wall flexibility as well as base excitation characteristics on the lateral earth pressures and flexural wall deflections were under concern. Outcomes of the analyses performed with FLAC-2D (v6.0) finite difference code were validated against the results of the physical model tests. It was observed that the arching effect induced in the retained soil by the lateral compression of the lower half of the geofoam buffer has a positive effect, as this zone is able to absorb a portion of the total unbalanced lateral force exerted by the backfill thus causing a reduction in the static and seismic lateral wall pressures. Relative thickness and stiffness of the geofoam buffer appear to be the most dominant factors affecting the reduction in earth thrust. Lateral earth pressure coefficients determined from physical model tests were compared with those calculated using methods available in the literature. Good agreement was observed between the predictions. Graphs were provided to estimate the static and dynamic lateral earth pressure coefficients for various combinations of wall stiffness and buffer characteristics. Analysis of a 6m high prototype cantilever wall subjected to an excitation recorded in August 17, 1999 Kocaeli earthquake by finite difference method exhibited the contribution of geofoam buffers on seismic performance of cantilever earth retaining walls. It was observed that the presence of an EPS geofoam inclusion provides a reduction of the permanent flexural wall deflections as well as total seismic thrust likely to be experienced by the wall during an earthquake.
Citation Formats
Ö. L. Ertuğrul, “Influence of deformable geofoam bufers on the static and dynamic behaviors of cantilever retaining walls,” Ph.D. - Doctoral Program, 2011.