Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Damage detection in beam-like structures via combined genetic algorithm and non-linear optimisation
Download
index.pdf
Date
2012
Author
Aktaşoğlu, Seyfullah
Metadata
Show full item record
Item Usage Stats
242
views
194
downloads
Cite This
In this study, a combined genetic algorithm and non-linear optimisation system is designed and used in the identification of structural damage of a cantilever isotropic beam regarding its location and severity. The vibration-based features, both natural frequencies (i.e. eigenvalues) and displacement mode shapes (i.e. eigenvectors) of the structure in the first two out of plane bending modes, are selected as damage features for various types of damage comprising saw-cut and impact. For this purpose, commercial finite element modelling (FEM) and analysis software Msc. Patran/Nastran® is used to obtain the aforementioned features from intact and damaged structures. Various damage scenarios are obtained regarding saw-cut type damage which is modelled as change in the element thicknesses and impact type damage which is modelled as a reduction of the elastic modulus of the elements in the finite element models. These models are generated by using both 1-D bar elements and 2-D shell type elements in Msc. Patran® and then normal mode analyses are performed in order to extract element stiffness and mass matrices by using Msc. Nastran®. Sensitivity matrices are then created by changing the related properties (i.e. reduction in elastic modulus and thickness) of the individual elements via successive normal mode analyses. The obtained sensitivity matrices are used as coefficients of element stiffness and/or mass matrices to construct global stiffness and/or mass matrices respectively. Following this, the residual force vectors obtained for different damage scenarios are minimised via a combined genetic algorithm and non-linear optimisation system to identify damage location and severity. This minimisation procedure is performed in two steps. First, the algorithm tries to minimise residual force vector (RFV) by only changing element stiffness matrices by aiming to detect impact type damage, as elastic modulus change is directly related to stiffness matrix. Secondly, it performs a minimisation over RFV by changing both element stiffness and mass matrices which aims to detect saw-cut type damage where thickness change is a function of both stiffness and mass matrices. The prediction of the damage type is then made by comparing the objective function value of these two steps. The lowest value (i.e. the fittest) indicates the damage type. The results of the minimisation also provide value of intactness where one representing intact and any value lower than one representing damage severity. The element related to that particular intactness value indicates the location of the damage on the structure. In case of having intactness values which are lower than one in value at various locations shows the existence of multi damage cases and provides their corresponding severities. The performance of the proposed combined genetic algorithm and non-linear optimisation system is tested on various damage scenarios created at different locations with different severities for both single and multi damage cases. The results indicate that the method used in this study is an effective one in the determination of type, severity and location of the damage in beam-like structures.
Subject Keywords
Genetic algorithms.
,
Airplanes
,
Helicopters
,
Damages.
URI
http://etd.lib.metu.edu.tr/upload/12614115/index.pdf
https://hdl.handle.net/11511/21385
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Lateral stiffness of steel plate shear wall systems
Topkaya, Cem (Elsevier BV, 2009-08-01)
The accuracy of the finite element method and strip method of analysis for calculating the lateral stiffness of steel plate shear wall (SPSW) systems is assessed by making comparisons with experimental findings. Comparisons revealed that while both methods provide acceptable accuracy, they also require the generation of sophisticated computer models. In this paper, two alternative methods are developed. The first one is an approximate hand method based on the deep beam theory. The classical deep beam theory...
Damage Detection in FRP Laminated Beams Using Neural Networks
Şahin, Melin (2002-07-10)
This paper presents a technique to predict the severity and the location of the damage in beam-like composite laminates by using modal parameters as input for an artificial neural network. A laminated cantilever beam is modelled using ANSYS 5.6© finite element software. Normal mode dynamic analyses have been performed for the first three natural modes of intact and damaged beams to find the modal parameters. Damage has been modelled as a local reduction in stiffness of the selected elements in the finite el...
Target damage level assessment for seismic performance evaluation of two-column reinforced concrete bridge bents
Yilmaz, Taner; Caner, Alp (IOS Press, 2012-01-01)
Displacement capacity verification analysis is usually used to evaluate the level of displacement at which structural elements reach their inelastic deformation capacities. In engineering practice, a modified version of displacement capacity analysis is used in the seismic performance assessment of bridge structures as an alternative to ductility and drift based approaches. In this seismic performance evaluation for a given target damage level, top bent displacement demand should not exceed a certain fracti...
Numerical analysis of long wavelength infrared HgCdTe photodiodes
Kocer, H.; Arslan, Y.; Beşikci, Cengiz (2012-01-01)
We present a detailed investigation of the performance limiting factors of long and very long wavelength infrared (LWIR and VLWIR) p on n Hg1-xCdxTe detectors through numerical simulations at 77 K incorporating all considerable generation-recombination (G-R) mechanisms including trap assisted tunneling (TAT), Shockley-Read-Hall (SRH), Auger and radiative processes. The results identify the relative strengths of the dark current generation mechanisms by numerically extracting the contribution of each G-R mec...
Thermal Anomaly and Alteration Mineral Mapping in İzmir Dikili Region by using ASTER and Investigation of the Geothermal Potential of the Region
Cambazoğlu, Selim; Yal, Gözde Pınar; Eker, Arif Mert; Koçkar, Mustafa Kerem; Osman, Şen; Akgün, Haluk (null; 2014-03-14)
This study encompasses the detection, mapping and validation of hydrothermal alteration types and minerals, surface temperature anomaly mapping utilizing remote sensing methods in order to assess the geothermal potential of the Dikili region. The study area covers Bergama, Dikili, Çandarlı and Altınova districts located at the northern part of İzmir Province where fumaroles and numerous thermal water outflows with temperatures between 63°C and 89°C are present. The study area is located at the northern part...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Aktaşoğlu, “Damage detection in beam-like structures via combined genetic algorithm and non-linear optimisation,” M.S. - Master of Science, Middle East Technical University, 2012.