Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Estimation of deterministic and stochastic imu error parameters
Download
index.pdf
Date
2012
Author
Ünsal, Derya
Metadata
Show full item record
Item Usage Stats
308
views
4324
downloads
Cite This
Inertial Measurement Units, the main component of a navigation system, are used in several systems today. IMU’s main components, gyroscopes and accelerometers, can be produced at a lower cost and higher quantity. Together with the decrease in the production cost of sensors it is observed that the performances of these sensors are getting worse. In order to improve the performance of an IMU, the error compensation algorithms came into question and several algorithms have been designed. Inertial sensors contain two main types of errors which are deterministic errors like scale factor, bias, misalignment and stochastic errors such as bias instability and scale factor instability. Deterministic errors are the main part of error compensation algorithms. This thesis study explains the methodology of how the deterministic errors are defined by 27 state static and 60 state dynamic rate table calibration test data and how those errors are used in the error compensation model. In addition, the stochastic error parameters, gyroscope and bias instability, are also modeled with Gauss Markov Model and instant sensor bias instability values are estimated by Kalman Filter algorithm. Therefore, accelerometer and gyroscope bias instability can be compensated in real time. In conclusion, this thesis study explores how the IMU performance is improved by compensating the deterministic end stochastic errors. The simulation results are supported by a real IMU test data.
Subject Keywords
Electronics.
,
Electrical Engineering.
,
Nuclear Engineering.
URI
http://etd.lib.metu.edu.tr/upload/12614059/index.pdf
https://hdl.handle.net/11511/21387
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Modelling of X-Band electromagnetic wave propagation
Pelgur, Ali; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2007)
Calculation of electromagnetic wave propagation over irregular terrain is an important problem in many applications such as coverage calculations for radars or communication links. Many different approaches to this problem may be found in the literature. One of the most commonly used methods to solve electromagnetic boundary value problems is the Method of Moments (MoM). However, especially at high frequencies, the very large number of unknows required in the MoM formulation, limits the applicability of thi...
Estimation of Deterministic and Stochastic IMU Error Parameters
Unsal, Derya; Demirbaş, Kerim (2012-04-26)
Inertial Measurement Units, the main component of a navigation system, are used in several systems today. IMU's main components, gyroscopes and accelerometers, can be produced at a lower cost and higher quantity. Together with the decrease in the production cost of sensors it is observed that the performances of these sensors are getting worse. In order to improve the performance of an IMU, the error compensation algorithms came into question and several algorithms have been designed. Inertial sensors conta...
Design of a slotted waveguide array antenna and its feed system
Top, Can Barış; Hızal, Altunkan; Department of Electrical and Electronics Engineering (2006)
Slotted waveguide array (SWGA) antennas find application in systems which require planarity, low profile, high power handling capabilities such as radars. In this thesis, a planar, low sidelobe, phased array antenna, capable of electronically beam scanning in E-plane is designed, manufactured and measured. In the design, slot characterization is done with HFSS and by measurements, and mutual coupling between slots are calculated analytically. A MATLAB code is developed for the synthesis of the SWGA antenna....
Implementation and performance evaluation of a three antenna direction finding system
Arslan, Ömer Çağrı; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2009)
State of the art direction finding (DF) systems usually have several antennas in order to increase accuracy and robustness to certain factors. In this thesis, a three antenna DF system is built and evaluated. While more antennas give better DF performance, a three antenna system is useful for system simplicity and many of the problems in DF systems can be observed and evaluated easily. This system can be used for both azimuth and elevation direction of arrival (DOA) estimation. The system is composed of thr...
Chaotic demodulation under interference
Erdem, Özden; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2006)
Chaotically modulated signals are used in various engineering areas such as communication systems, signal processing applications, automatic control systems. Because chaotically modulated signal sequences are broadband and noise-like signals, they are used to carry binary signals especially in secure communication systems. In this thesis, a target tracking problem under interference at chaotic communication systems is investigated. Simulating the chaotic communication system, noise-like signal sequences are...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Ünsal, “Estimation of deterministic and stochastic imu error parameters,” M.S. - Master of Science, Middle East Technical University, 2012.