Simulation and performance evaluation of a fast and high power pulsed laser diode driver for laser range finder

Download
2012
Altınok, Yahya Kemal
Laser Diodes (LDs) are semiconductor coherent lightening devices which are widely used in many fields such as defence, industry, medical and optical communications. They have advantageous characteristics such as having higher electrical-to-optical and optical-to-optical conversion efficiencies from pump source to useful output power when compared to flash lamps, which makes them the best devices to be used in range finding applications. Optical output power of lasers depends on current through LDs. Therefore, there is a relationship between operating life and work performance of LDs and performance of drive power supply. Even, weak drive current, small fluctuations of drive current can result in much greater fluctuations of optical output power and device parameters which will reduce reliability of LDs. In this thesis, a hardware for a fast and high power pulsed LD driver is designed for laser range finder and is based on linear current source topology. The driver is capable of providing pulses up to 120A with 250μs pulse width and frequencies ranging from 20Hz to 40Hz. It provides current pulses for two LD arrays controlled with a proportional-integral (PI) controller and protect LDs against overcurrents and overvoltages. The proposed current control in the thesis reduces current regulation to less than 1% and diminishes overshoots and undershoots to a value less than 1% of steady-state value, which improves safe operation of LDs. Moreover, protection functions proposed in the thesis are able to detect any failure in driver and interrupt LD firing immediately, which guarantees safe operation of LDs.
Citation Formats
Y. K. Altınok, “Simulation and performance evaluation of a fast and high power pulsed laser diode driver for laser range finder,” M.S. - Master of Science, Middle East Technical University, 2012.