Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Springback analysis in bending through finite element method based artificial neural networks
Download
index.pdf
Date
2013
Author
Şenol, Özgü
Metadata
Show full item record
Item Usage Stats
216
views
261
downloads
Cite This
Springback prediction is vital in order to obtain the desired part shape in metal forming processes. In most of the applications, springback amount is determined by trial and error procedures, and recently by using numerical methods or through handbook tables. Artificial Neural Network (ANN) is a helpful tool for the engineers and applied in this study to determine the springback amounts in air, V-die and wipe bending processes. For this purpose, bending processes are analyzed by commercial finite element (FE) software and springback amounts are collected for different parameters such as thickness, die radius, bending angle, etc. Then, by developing a feedforward neural network with backpropagation learning algorithm, the springback amounts for bending applications are determined. ANN results of three bending operations are combined to analyze an industrial workpiece. In addition to this, an experimental bending operation is analyzed for air bending process. It is shown that ANN can be effectively applied to determine springback amount in air, V-die and wipe bending.
Subject Keywords
Metal-work.
,
Materials
,
Springback (Elasticity).
,
Finite element method.
URI
http://etd.lib.metu.edu.tr/upload/12616448/index.pdf
https://hdl.handle.net/11511/23008
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Springback analysis in air bending process through experiment based artificial neural networks
Senol, Ozgu; Esat, Volkan; Darendeliler, Haluk (2014-10-24)
Sheet metal bending is one of the most frequently used sheet metal forming processes in manufacturing industry. This study investigates bending parameters and springback phenomenon of a stainless-steel sheet in air bending process. In most of the applications, springback is determined either by trial and error procedures or by using numerical methods. Artificial Neural Network (ANN) approach has proved to be a helpful tool for the engineers. ANN is used in this study to predict the springback amounts of sta...
Numerical analysis of thermo-mechanical behavior in flow forming
Günay, Enes; Fenercioglu, Tevfik Ozan; Yalçınkaya, Tuncay (2021-01-01)
Flow forming is a metal forming process for cylindrical workpieces where high velocity deformation leads to radial thinning and axial extension. In the current study, a thermomechanical, dynamic and explicit finite element model of a flow forming process is developed on ABAQUS software. The model is validated through the comparison of reaction forces and geometry obtained from the experiments. Coolant convection effect is analyzed in conjunction with roller and mandrel conduction cooling to study the therma...
Characterization of SAE 52100 bearing steel for finite element simulation of through-hardening process /
Müştak, Ozan; Gür, Cemil Hakan; Şimşir, Caner; Department of Metallurgical and Materials Engineering (2014)
Through hardening is probably the most important heat treatment process for bearings as final geometrical and material characteristics of the final component are mainly determined in this step. Finite element simulation of heat treatment processes is stand out as a qualified solution for prediction of final properties of component due to advantages e.g. cost and time savings, over real-time furnace experiments. Heat treatment simulation needs accurately extracted material property database including thermo-...
Coupled thermomechanical analysis of concrete hardening
Andiç, Halil İbrahim; Göktepe, Serdar; Yaman, İsmail Özgür; Department of Civil Engineering (2015)
Thermomechanically coupled modeling of fresh concrete allows us to predict the interaction between thermal and mechanical mechanisms throughout the setting and hardening process. Because of cement hydration, an excessive temperature increase may occur in the interior regions of mass concrete structures. This temperature increase along with the thermal boundary conditions may result in thermal gradients within concrete structures. Owing to the thermal gradients and mechanical constraints, thermally induced s...
Fracture analysis of welded connections
Yetgin, Ali; Kadıoğlu, Fevzi Suat; Department of Mechanical Engineering (2013)
The main objective of this thesis is to evaluate structural integrity of a multi barrel launcher system on fracture mechanics basis by using finite element method. A global finite element model that includes necessary kinematic and elastic connections is built. Dynamic firing forces are applied on global finite element model and general structural response is obtained. Sub modeling method is used in order to perform crack analysis. Since size of global model is too large to include solid crack elements whic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Şenol, “Springback analysis in bending through finite element method based artificial neural networks,” M.S. - Master of Science, Middle East Technical University, 2013.