Optimal bidding strategies for day ahead electricity market by risk constrained stochastic price based unit commitment

Download
2014
Shileh Baf, Amir
Optimum bidding curves for a generating company to take part in the day ahead energy market are developed throughout this thesis. Continuous aim of the generating company to maximize its profit will be partly fulfilled by optimizing its bidding in the market. Price uncertainty has always been a major issue for proper bidding and maximizing the payoff. In contrast with traditional Price Based Unit Commitment which is only dependent on a good forecast of energy prices, stochastic programming takes care of the price volatility by generating different possible scenarios using Monte Carlo Simulation method. Generating Company would be able to control his risk factor by indicating its risk tolerance in the model and trade some of the profit in favor of taking less risk. MATLAB platform is used to code the Mixed Integer Linear Programming model while CPLEX 9.0 solver engine is utilized to solve the optimization problem. Several case studies have been examined to show the validity of the model and the results have been interpreted to give more insight of the optimization solution.

Suggestions

Day ahead markets
Kütaruk, Kaan; Sevaioğlu, Osman; Department of Electrical and Electronics Engineering (2013)
Day Ahead Market is a mechanism in electricity markets for adjusting the supply-demand energy and capacity balance by providing bids one day before the clearing. Market operator needs to know the available energy and capacity for reaching minimal-cost supply-demand balance one day earlier than the market has been cleared. Minimizing cost of the electricity and capacity during 24 hours of a day requires accurate information concerning the available electricity and capacity. Day-ahead marketing activity is pe...
Electricity load and price forecasting of Turkish electricity markets
Kalay, Oğuz; Karasözen, Bülent; Department of Financial Mathematics (2018)
Progress on the forecasting techniques of market clearing price (MCP) and system marginal price (SMP) conveys millions of dollars profit to the electricity generator corporations. Therefore, more accurate forecasting system on total electricity load (TEL) and market prices enhances profits of the market participants. System of the Turkish Electricity Market has three interdependent platforms; Day Ahead Market (DAM), Intra-Day Market (IDM) and Balancing Power Market (BPM). MCP and SMP are the most important ...
On the parametric and nonparametric prediction methods for electricity load forecasting
Erişen, Esra; İyigün, Cem; Department of Industrial Engineering (2013)
Accurate electricity load forecasting is of great importance in deregulated electricity markets. Market participants can reap significant financial benefits by improving their electricity load forecasts. Electricity load exhibits a complex time series structure with nonlinear relationships between the variables. Hence, new models with higher capabilities to capture such nonlinear relationships need to be developed and tested. In this thesis, we present a parametric and a nonparametric method for short-term ...
Statistical modeling of hourly electricity load series in Turkey
Özpala, Pınar; Gaygısız Lajunen, Esma; Department of Economics (2013)
This study investigates Heterogeneous Double Seasonal ARIMA model, Heterogeneous Periodic AR model and a nonlinear model of Multiple Regime Logistic STAR model by application of hourly electricity load data between years 2006-2007 in Turkey. Forecast results suggest that Heterogeneous Double Seasonal ARIMA model is the best among three methods forecasting up to one day.
Stochastic wind-thermal generation coordination for Turkish day-ahead electricity market /
Aydoğdu, Aycan; Güven, Ali Nezih; Tör, Osman Bülent; Department of Electrical and Electronics Engineering (2014)
Uncertainties in wind power forecast, day-ahead and imbalance prices for the next day possess a great deal of risk to the profit of generation companies (GENCOs) participating in a day-ahead electricity market. GENCOs are exposed to imbalance penalties in the balancing market for any mismatch between their day-ahead power bids and real-time generations. Proper coordination of wind generation with thermal generation reduces this risk associated with wind uncertainty. This thesis proposes an optimal bidding a...
Citation Formats
A. Shileh Baf, “Optimal bidding strategies for day ahead electricity market by risk constrained stochastic price based unit commitment,” M.S. - Master of Science, Middle East Technical University, 2014.