Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Efficient numerical analysis and design of reflectarray antennas
Download
index.pdf
Date
2015
Author
Erçil, Erdinç
Metadata
Show full item record
Item Usage Stats
233
views
73
downloads
Cite This
The accurate numerical analysis of electrically large reflectarray antennas has been a challenging task since their advent because it becomes impractical to employ the generalized numerical electromagnetic tools for their numerical analysis. Therefore the classical approach is to resort to approximate methods. However, approximate methods trade off accuracy against memory and speed. In this thesis study; an approximate analysis technique is established such that it is more accurate than the present approximate analysis techniques and more efficient than the full wave analysis schemes in terms of memory requirement and speed. The technique relies on using characteristic modes as macro basis functions and reusing the dominant characteristic mode of the resonant element for all elements in the reflectarray. This utilization leads to obtaining a reduced matrix system where the number of unknowns is drastically decreased. As far as the far field is concerned, accurate results even with a single characteristic mode are achieved. The accuracy is attained owing to preservation of mutual coupling information via the original MoM impedance matrix. The solution is further accelerated by tabulating the entries of the reduced matrix as a function of interacting patch sizes and their relative displacements. It is observed that for sufficiently separated patches, the reduced matrix entry is almost a separable function of the two dimensional displacement between patches and patch sizes associated with the matrix entry. Tabulation is efficiently performed by exploiting this fact. Achieved acceleration is sufficient to use this analysis method in the design of reflectarrays. For a 1000 element array, the tabulation process takes 28 min on a platform with 3.3 GHz CPU clock speed. With the lookup table at hand, the solution time, which is important for the design iterations, is 0.38 seconds. The speed provided by the method makes it possible to employ gradient based optimization algorithms such as Steepest Descent or Conjugate Gradient Method, both of which are successfully applied to two design problems in the scope of the study.
Subject Keywords
Antenna arrays.
,
IAntennas (Electronics).
,
Numerical analysis.
,
Mathematical optimization.
URI
http://etd.lib.metu.edu.tr/upload/12618440/index.pdf
https://hdl.handle.net/11511/24480
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Theoretical investigation and design of wideband dielectric resonator antennas
Yüksel, Yılmaz Çağrı; Alatan, Lale; Department of Electrical and Electronics Engineering (2015)
The aim of this thesis is to utilize Dielectric Resonator Antennas (DRA) as array elements due to their advantages over other conventional antenna elements such as dipoles and microstrip patches. Depending on both the excitation mechanisms and the antenna shape, a Dielectric Resonator Antenna (DRA) provides its designer multiple independent degrees of freedom. In this thesis three antenna shapes, namely hemispherical, cylindrical and rectangular DRAs, are investigated. The cylindrical and the rectangular sh...
Modified neural multiple source tracking algorithm in the presence of mutual coupling
Caylar, Selcuk; Leblebicioğlu, Mehmet Kemal; Dural, Guelbin (2007-06-15)
In smart antenna systems, mutual coupling between elements can significantly degrade the processing algorithms [1]. In this paper mutual coupling effects on Modified Neural Multiple Source Tracking Algorithm (MN-MUST) has been studied. MN-MUST algorithm applied to the Uniform Circular Array (UCA) geometry for the first time. The validity of MN-MUST algorithm in the presence of mutual coupling has been proved for both Uniform Linear Array (ULA) and UCA. Simulation results of MN-MUST algorithm are provided fo...
Design of series-fed printed slot antenna arrays excited by microstrip lines
İncebacak, Mustafa; Alatan, Lale; Department of Electrical and Electronics Engineering (2010)
Series-fed printed slot antenna arrays excited by microstrip lines are low profile, easy to manufacture, low cost structures that found use in applications that doesn’t require high power levels with having advantage of easy integration with microwave front-end circuitry. In this thesis, design and analysis of microstrip line fed slot antenna arrays are investigated. First an equivalent circuit model that ignores mutual coupling effects between slots is studied. A 6-element array is designed by using this e...
Wideband omnidirectional and sector coverage antenna arrays for base stations
Alatan, Lale (2018-01-01)
By using parallel strip line fed printed dipole antennas as array elements, an omnidirectional antenna array and a wide angle sector coverage array operating in octave band are designed. A maximum deviation of ±1.25 dB from the omnidirectional pattern is achieved for the omnidirectional array, and the average gain of the antenna was measured as being 5 dB in the 1.35–2.7GHz band. For the sector coverage array, a special reflector design is utilized to maintain a half power beam width of around 115◦ with a s...
Subspace based radar signal processing methods for array tapering and sidelobe blanking
Dinler, Doğancan; Candan, Çağatay; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2017)
The discretization of the signal impinging on several hundreds, even thousands, of receiving elements has become a common problem in modern phased array radar systems along with the developments in the digital signal processing. The spatial and temporal processing of such large dimensional data is too challenging for all steps of signal processing. This thesis is focused on the subspace methods that making the processing of the full dimensional data feasible at reduced dimensions. The first objective of the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Erçil, “Efficient numerical analysis and design of reflectarray antennas,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.