Numerical modeling of short term morphological changes around coastal structures and at the river mouths

Download
2016
Demirci, Ebru
In this study, XBeach, a two dimensional depth averaged numerical model developed mainly for simulating nearshore hydro- and morphodynamics is applied to two case studies; i) laboratory experiments on short-term morphological changes around a detached breakwater and a T-groin and ii) a fluvial dominated coastal flooding event at the Manavgat river mouth between dates, 4th and 15th December, 1998. In the first part of study, the numerical model is calibrated for the wave, current and bottom evolution conditions using the base experiment in which there are no structures. Later, the model is applied to the detached breakwater and T-groin experiments. It is observed that the numerical model results are in agreement with the measured wave heights and current velocities in the vicinity of structures, however the morphological changes are slightly underestimated. To investigate the scale dependency of numerical model, the laboratory data is scaled up using undistorted Froude scaling and the numerical model is applied to the scaled-up experiments. The results of latter simulations show that the morphological changes are represented better. In the second part of the study, a preliminary numerical modeling is carried out to investigate the capabilities of the numerical model in combined fluvial-coastal flood events. The numerical model is applied to a twelve day fluvial dominated coastal flooding event, in which the initial and final shorelines measured are compared with the model results. The river mouth has widened at the end of the simulation, as observed, and the eroded material is accreted in front of the river mouth forming a submerged sand bar. The final shoreline between the river mouth and the east jetty shows well agreement with the measured, whereas the wave induced erosion at the seaward edge of west side of the river mouth is underestimated.

Suggestions

Numerical calculation of backfilling of scour holes
Sumer, B Mutlu; Baykal, Cüneyt; Fuhrman, David R; Jacobsen, Niels G; Fredsoe, Jorgen (2014-12-04)
A fully-coupled hydrodynamic and morphologic CFD model is presented for simulating backfilling processes around structures. The hydrodynamic model is based on Reynolds-averaged Navier-Stokes equations, coupled with two-equation k-ω turbulence closure. The sediment transport model consists of separate bed and suspended load descriptions, the latter based on a turbulent diffusion equation coupled with a reference concentration function near the sea bed boundary. Bed morphology is based on the sediment continu...
Integrated nonlinear regression analysis of tracer and well test data
Akın, Serhat (Elsevier BV, 2003-08-01)
One frequent observation from conventional pressure transient test analysis is that field data match mathematical models derived for homogeneous systems. This observation suggests that pressure data as presently interpreted may not contain details concerning certain reservoir heterogeneities. On the other hand, tracer tests may be more sensitive to heterogeneous elements present in the reservoir because of the convective nature of the flow test. In this study, a possible improvement of conventional pressure...
Numerical Modeling of Backfilling Process around Monopiles
Baykal, Cüneyt; Fuhrman, David R; Jacobsen, Niels G; Fredsoe, Jorgen (2014-06-20)
This study presents a three-dimensional (3D) numerical modeling study on the backfilling process around monopiles. The numerical model utilized in the study is based on that given by Jacobsen (2011). It is composed of two main modules. The first module is the hydrodynamic model where the fluid flow conditions around the structure and near the bed are solved. The second module is the morphologic model where the sediment transport rates over the bed and around the structure are obtained and used in updating b...
Nonlinear 3D Modeling and Vibration Analysis of Horizontal Drum Type Washing Machines
Baykal, Cem; Ciğeroğlu, Ender; Yazıcıoğlu, Yiğit (2020-01-01)
In this study, a nonlinear 3-D mathematical model for horizontal drum type washing machines is developed considering rotating unbalance type excitation. Nonlinear differential equations of motion are converted into a set of nonlinear algebraic equations by using Harmonic Balance Method (HBM). The resulting nonlinear algebraic equations are solved by using Newton’s method with arc-length continuation. Several case studies are performed in order to observe the effects of orientation angles of springs and damp...
Numerical Aspects of POD-Based Reduced-Order Modeling forDarcy-Brinkman Equations
Güler Eroğlu, Fatma; Kaya Merdan, Songül (2018-10-21)
We propose, analyze and test a reduced order modelling with proper orthogonal decomposition (POD) method for the modeling to flows governed by double diffusive convection, which models flow driven by two potentials with different rates of diffusion. We present a theoretical analysis of the method and give results for various numerical tests on benchmark problems that will demonstrate both the theory and the effectiveness of the proposed method.
Citation Formats
E. Demirci, “Numerical modeling of short term morphological changes around coastal structures and at the river mouths,” M.S. - Master of Science, Middle East Technical University, 2016.